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Hello and welcome back. We were studying the dynamical response of first order systems. And 

we looked at the characteristic features of such systems when subjected to various idealized 

input of forcing functions. What we will do today is we will take up the example of a second 

order system, and compare and contrast how the dynamical response or dynamical 

characteristics of a second order system differs from that of a first order system. 
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So, the first order system example that we took yesterday was a single liquid level tank. So, let 

me quickly draw this tank. We had a tank in which certain level of the liquid h was maintained, 

the input flow rate was q1, the output flow rate was q2; the dynamical equations are in front of 

you. 

𝑑ℎ(𝑡)

𝑑𝑡
=

1

𝐴
(𝑞1 − 𝑞2) 

And we saw that we could pose these equations very well and develop a transfer function when 

q1 was assumed to be a constant. And q2 was assumed to be a constant times the height or level 

of liquid in the tank h.  

𝑞1 = 𝑐 ;  𝑞2 = 𝑎ℎ 

So, we developed the transfer function for the system and the response of such systems when 

subjected to an ideal step function. 

So, I have t on my x-axis, h(t) on the y-axis. And if I have subjected this system to an input of 

magnitude A, then I know that the dynamical response would look something like this. And 

for different time constants of my system, I can draw different responses. So, if time constants 

are τ1, τ2, τ3, then I know that τ3 > τ2 > τ1. The smaller the time constant, the faster response. 

But, what is important to understand here is that, irrespective of the time constant, my system 

always tries to reach the imposed input which is the forcing function of magnitude A, a step 

forcing function. 

The speed of the response may differ, but you asymptotically reach there. So, two things are 

there that you your response always has a qualitative behavior which looks something like this. 

You asymptotically reach the response which must be equal to A and then there are no 



oscillations in the system. In other words, you have a monotonous behavior. And is this 

something which is in correspondence with what we observed for the case of our state space 

analysis. In fact, we did because two typical phase portraits that we saw were like this, that I 

have t, I have x(t), I have t here, I have x(t) here and the phase lines for the two cases would be 

like this, as you see here. 

This is for a < 0 and this is for a > 0 for the equation of the type  
𝑑𝑥

𝑑𝑡
= 𝑎𝑥.  So, the behavior 

was always monotonous; either monotonically increasing or monotonically decreasing. In fact, 

you in this current case what you did was you were looking for a positive step function of 

magnitude A, you can have a negative step function of magnitude -A and then you will see that 

you, you will see a monotonically decreasing behavior in your system. So, looks like the two 

behaviors are consistent. 

In fact, what you drew here h(t) versus t is nothing but a phase portrait, where you have drawn 

the response rather than absolute values and various phase lines would actually correspond to 

very similar behavior, which you saw otherwise during the state space domain analysis. So, if 

this be the case, if we take an example of a second order system. Then, what we want to know 

is that in case where we are doing the analysis in transform domain, will I still observe 

analogous responses or the family of responses which we saw in the previous lectures during 

the state space domain analysis. So, let us see if that is the case. 
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So, I have a system in which I have a first order system with a single tank. And I saw previously 

that I can make a second order system from this by adding another tank downstream to the first 

tank and again taking out an outlet stream which is which has a volumetric flow rate q3 in this 

case. So, q1 comes to tank one, q2 goes out of tank one, acts as a feed to two; q3 comes out of 

tank three. And I have two components of my dynamical vector in this case; h1, the level of 

liquid in tank one and h2, the level of liquid in tank two. So, let us see if we can do a similar 

analysis, and what kind of features we get in this particular case. 
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So, I have the equations like this,  

𝑑ℎ1(𝑡)

𝑑𝑡
=

1

𝐴1
(𝑞1 − 𝑞2) 

and  

𝑑ℎ2(𝑡)

𝑑𝑡
=

1

𝐴2
(𝑞2 − 𝑞3) 

These are my dynamical equations. And what are the different relationships between a given 

flow rate and the liquid level? I can write here q1, in fact, q1 is the inlet flow rate; so, it would 

be simply for the time being assume that it is a constant; so,  

𝑞1 = 𝑐 

q2 will depend upon the outlet; because its outlet from tank one, depend upon the level of liquid 

in tank one. So, I can write this as  

𝑞2 = 𝑎ℎ1 

and q3 can be written as some other wall coefficient. So, b and this time it would depend upon 

the level of liquid in tank two; So,  

𝑞3 = 𝑏ℎ2 

So, let us now do analysis which is similar to the analysis which we did for a single tank. 
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So, I have the equation as  

𝑑ℎ1

𝑑𝑡
=

𝑐

𝐴1
−

𝑎ℎ1

𝐴1
    … … … (1) 

and 

𝑑ℎ2

𝑑𝑡
=

𝑎ℎ1

𝐴2
−

𝑏ℎ2

𝐴2
   … … … (2) 



So, let me do some rearrangements to put the equations in suitable form. So, let me write this 

as equation (1); let me refer this equation as (2). So, I can write this as  

𝑑ℎ1

𝑑𝑡
+

𝑎ℎ1

𝐴1
=

𝑐

𝐴1
   

If we remember the procedure from yesterday's discussion, I will make the coefficient of h1 as 

unity. 

So, this becomes 

𝐴1

𝑎

𝑑ℎ1

𝑑𝑡
+ ℎ1 =

𝑐

𝑎
  

And now I will convert this equation to a form which has the departure variables or which 

would give me (h1 - hs). And if c acts as the input function, So, (c1 - cs). So, that corresponding 

equation in deviation variable form would become 

𝐴1

𝑎

𝑑𝑦1

𝑑𝑡
+ 𝑦1 =

𝑢

𝑎
 

Now, it is not very difficult from here to get an expression for the Laplace transformation. So, 

I will have  

[(
𝐴1

𝑎
) 𝑠 + 1] 𝑦1̅̅ ̅(𝑠) =

1

𝑎
𝑢̅(𝑠) 

From where I get an expression  

𝑦1̅̅ ̅(𝑠)

𝑢̅(𝑠)
=

(
1

𝑎
)

(
𝐴1

𝑎
) 𝑠 + 1

… … … (3) 

So, what is the physical significance of equation (3)? Equations (3) is the transfer function for 

the dynamics of the tank one alone. So, if that is the case, I have  𝑦̅(𝑠), which means the 

dynamical variable in deviation form for tank one, divided by the input for tank one. So, this 

will give me the dynamics only of tank one. And then I can say that from this equation,  
1

𝑎
 

would be my static gain of the system and the time constant of a system would be  
𝐴1

𝑎
. 

So, this is what I get then, I also need to do one thing. I now need to do a similar analysis for 

equation (2). So, I will do a rearrangement for equation (2) from where I will get 



𝑑ℎ2

𝑑𝑡
+

𝑏ℎ2

𝐴2
=

𝑎ℎ1

𝐴2
 

I will do some rearrangement. So, I can write this as  

𝐴2

𝑏

𝑑ℎ2

𝑑𝑡
+ ℎ2 =

𝑎

𝑏
ℎ1 

I will put this in deviation variable form and in fact, I have forgotten the area. So, let me, no 

sorry area gets cancelled out. So, area will not appear there. So, it is simply So, from here I will 

now put the equation to deviation variable form. So, I can write this as  

𝐴2

𝑏

𝑑𝑦2

𝑑𝑡
+ 𝑦2 =

𝑎

𝑏
𝑦1 

And now I will take the Laplace transformation. So, this will be  

[(
𝐴2

𝑏
) 𝑠 + 1] 𝑦2̅̅ ̅(𝑠) =

𝑎

𝑏
𝑦1̅̅ ̅(𝑠) 

In other words, 

𝑦2̅̅ ̅(𝑠)

𝑦1̅̅ ̅(𝑠)
=

(
𝑎

𝑏
)

(
𝐴2

𝑏
) 𝑠 + 1

… … … (4) 

Let me refer this as equation number (4). So, let us try to understand what does equation (4) 

mean, equation (4) has (
𝑦2̅̅̅̅ (𝑠)

𝑦1̅̅̅̅ (𝑠)
). So, if you remember our arrangement, you had tank two in 

which the input to tank two was flow rate two; the and outlet was flow rate q3. So, that means 

y2 is acting y1 is acting as the input, and y2 is acting as the output; so, therefore, this is the 

Laplace transform. 

But, what I want to do is now this, I can I can have a number of tanks in my system in a process 

and just for example. And all I would be interested in is the output from the last tank and output 

of the last tank would depend upon the level of liquid in the last tank. So, therefore, I would be 

interested in the level of liquid in the last tank. I may not worry about what is going on in the 

intermediate tanks. All of them would result into some dynamics which would affect the liquid 

level in the final tank. 

But, I would ideally like to control only the input feed which is the input to the first tank and I 

would like to know the effect at the last tank. So, that means what do I want? I want  
𝑦2̅̅̅̅ (𝑠)

u̅(𝑠)
. 



What should this be equal to? Well, equation (3) has  
𝑦1̅̅̅̅ (𝑠)

𝑢(𝑠)
 and equation (4) has  

𝑦2̅̅̅̅ (𝑠)

𝑦1̅̅̅̅ (𝑠)
 I will 

simply multiply these two equations; I will get the desired quantity. So, I will get  

𝑦2̅̅ ̅(𝑠)

u̅(𝑠)
=  

(
1

𝑎
)

(
𝐴1

𝑎
) 𝑠 + 1

+
(

𝑎

𝑏
)

(
𝐴2

𝑏
) 𝑠 + 1

 

So, therefore, I see that my overall transfer function, my overall transfer function is simply a 

multiplication of individual transfer functions. 
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So, let us try to put this system in form which can be easy to visualize. So, when we have a 

single tank, so I have a single tank input output. My input is u in the deviation variable form.  

Output is y. So, what I infer from here is that I give an input to my system, and I feed it to a 

box which is which does a mathematical operation. And that mathematical operation happens 

to be g(s)... the transfer function, the first order transfer function  

𝑔(𝑠) =
y̅(𝑠)

𝑢̅(𝑠)
 

and what I get as the output is  y̅(𝑠). So, this is the this is the block diagram for the system. 

Now, I have two tanks. So, I have the input in terms of deviation variable and other deviation 

variables, I have the input to the first tank. From the first tank, I have the output which is y1; y1 

is the output from first tank acts as the input for the second tank, and here you have y2. Now, 

y1 is an has been represented as an output that happens to be the liquid level in this case. So, 

this is a...... do not think that y1 is a flow or y1 is whether it is a flow or a level of liquid and so 

on. We are trying to convert the variables and the representation which you see here in terms 

of block diagram. 

So, all we are trying to do but this particular representation is that if there is some disturbance 

u; which means some change in the inlet flow rate, some change in the outlet flow rate will 

happen. It will happen, because of the change in the liquid level and so on. So, what is going 

on here? Your ultimate input to the system is u and this input acts on the first tank with the 



transfer function g1(s) and it gives the output as y1, output from the first tank. So, this would 

be what?  

𝑔1(𝑠) =
𝑦1̅̅ ̅(𝑠)

u̅(𝑠)
 

And then y1 is fed to the second tank as the input and the output that you get is y2. 

So, here you will have  

𝑔2(𝑠) =
𝑦2̅̅ ̅(𝑠)

𝑦1̅̅ ̅(𝑠)
 

But, if you want if you want this to be the input and this to be the ultimate output, then what 

would you like to do? You would like to draw a larger block here. Now, in this larger block, 

you will have some mathematical operation like the way you have a mathematical operation 

g(s) for the first order system. You have again a single input u, single output y2 and within this, 

there is a larger mathematical operation which takes place. And then the corresponding single 

transfer function would become   

𝑔(𝑠) =
𝑦2̅̅ ̅(𝑠)

u̅(𝑠)
 

And this would be nothing but  

𝑔(𝑠) = 𝑔1(𝑠) 𝑔2(𝑠) 

So, this is the block diagram representation of this entire scheme. Now what is interesting to 

be noted here is that I have this. 
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I have my first system u ...... y; my transfer function is  

𝑔(𝑠) =
𝐾

(𝜏𝑠 + 1)
 … … … (1) 

I have now the second system u, y1, y2 and I will have g1(s) which gives the dynamics of liquid 

level change in the first tank. It would be 



𝑔1(𝑠) =
𝐾1

(𝜏1𝑠 + 1)
… … … (2)   

And g(s) which is the overall transfer function indicating the dynamics of my system would be  

𝑔(𝑠) = 𝑔1(𝑠) 𝑔2(𝑠) 

And this would be equal to 

g(𝑠) =
𝐾1𝐾2

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)
… … … (3)   

 K1, K2 simple multiplication of individuals static gains. And if this be the case, I want to know 

what is the dynamics or what is the order of my system? 

So, I have equation (1), equation (2), equation (3). If I look at equation (1), I have one single 

tank; the order of my system is 1. How do I do that? How do I know that? I look at the degree 

of the polynomial in the in the denominator of my transfer function; 𝜏𝑠 + 1, first degree 

polynomial ...order one. The overall dynamics for a two-tank system, here order not very 

difficult to see. The degree of the polynomial in the denominator is 2. So, the order is 2. And 

we in fact know that it is a second order system; because we derived this transfer function 

considering two first order ODEs, perfect correspondence. 

But, what is the order of the system? If you consider only the first tank of a two-tank system; 

the order the order is again 1. So, the dynamics of only the first tank is first order; whereas, the 

overall dynamics of the system is second order. Now, the question is how would the second 

order dynamics look like? So, the transfer function is here in front of in front of you. 

 

(Refer Slide Time: 26:19) 

 

So, the transfer function is  

g(𝑠) =
𝑦2̅̅ ̅(𝑠)

𝑢̅(𝑠)
=

𝐾1𝐾2

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)
   

And my input function is a step input; so,  

𝑢̅(𝑠) =
𝐴

𝑠
 



So, what would be y(t)?  

𝑦(𝑡) = 𝐿−1 {
𝐴𝐾1𝐾2

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)𝑠
} 

You will do a partial and do the inverse Laplace transformation. So, I am writing the final step 

for you; please work this out at home. 

This should look like  

𝑦(𝑡) = 𝐴𝐾1𝐾2 [1 − (
𝜏1

𝜏1 − 𝜏2
) 𝑒

−
𝑡

𝜏1 − (
𝜏2

𝜏2 − 𝜏1
) 𝑒

−
𝑡

𝜏2] 

 

Very simple derivation nothing very difficult in it, please work this out. This is what you will 

get as the answer. What I would emphasize now or spend my time now is to see the nature of 

this solution. So, let us plot this solution in the Desmos calculator. What we have in front of us 

is f(x). I know the importance of A and K1 and K2. So, let us get rid of that. Let us make 

everything unity; let us denote 𝜏1 as 𝑐1. 

So, 

𝑓(𝑥) =  1 − (
𝑐1

𝑐1 − 𝑐2
) 𝑒

−
𝑥

𝑐1 − (
𝑐2

𝑐2 − 𝑐1
) 𝑒

−
𝑥

𝑐2 

 So, let us see how does this look like? These values must always be positive; let me make from 

0 to 5, let me make this from 0 to 5. And I am worried only about the first quadrant, so let us 

look at this; so, this is the dynamical behavior, dynamical evolution. Let me make the time 

constant small that, so that you can see a quick evolution of the system; this is how the system 

is evolving. 

Looks similar to what we studied in the previous lecture; but then let us compare it against of 

the dynamical response of a first order system. So, the dynamical response of a first order 

system is simply given as 

𝑔(𝑥) = 1 − 𝑒
−

𝑥

𝑐1 

c1 is just the time constant of for the first order system and then let me do one thing. I have 

already seen that what you can see as the black curve, which is the response of a first order 

system is faster than the response of a second order system. Let me do an animation, and see if 



is there any situation where this red curve, which is the response of a second order system 

becomes faster than the response of a first order system. 

So, let me do an animation and let us watch the animation. You will see that in every case, the 

black curve is always on top, the red curve is always at the bottom. The meaning of this is that 

in each and every situation, the dynamical response of a second order system is slower than the 

dynamical response of a first order system. This is one important feature that we saw. So, let 

us do one thing. Let us quickly draw the response. 
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What we see here is this, that I have t versus y. And if this is the imposed forcing function, then 

if this is the first order response, then second order response under every condition would 

always be something like this. And if this is second order, now you can extend this analysis; 

the third order would be like this, even more slower. The fourth order would be even more 

slower and so on; so, this is the Nth order dynamic. So, as the order of your system increases, 

the dynamics become slower and slower and slower; this is one important observation. Final 

one more observation is that you never saw any oscillation in the system. 

You always saw that the response of the second order system was slower than the response of 

the first order system. But, never was the response oscillatory, which means that in second 

order system as well, you saw only monotonous response. But, this is quite contrary to what 

we saw in the state space domain analysis that you could have response which was oscillatory. 

So, why does this happen? Whenever you have systems where the transfer function is simply 

multiplication of individual transfer functions; you will never observe any oscillations in the 

system. 

What are the cases when you will observe oscillations; we will take that up in the next lecture. 

Till then, goodbye. 


