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So, we meet again to continue our discussion on linear first order autonomous systems. We 

will take an example from process industries today. And see how we can actually use these 

concepts for understanding process industry and allied systems. So, before we go into the 

details let us have a very quick recapitulation of what we learned from the first lecture till the 

third lecture.  

We were interested in understanding the dynamics of first order linear autonomous systems. 

So, the definition of first order was that they are the systems in which there is one and only one 

governing dynamical equation and the equation is of first order and the equation is going to be 

an ordinary differential equation.  

The system was defined as linear if the corresponding operator was a linear operator and the 

condition for linearity was that it has to satisfy two properties if u and v are the vectors in the 

linear vector space for which the operator was defined then the according to the first property 

𝐿̂(𝑢 + 𝑣) =  𝐿̂(𝑢) + 𝐿̂(𝑣) 

And if α is a member of the field of which the linear vector space is defined then 

𝐿̂(𝛼𝑢) = 𝛼 𝐿̂(𝑢) 

These are the two conditions which must be satisfied for a system to be linear. It is important 

to note that the solution functions themselves do not need to be linear. Which means that the 

solutions can be sinusoidal and the solutions can be exponential or it can be any non-linear 

function but the corresponding operator which governs the dynamics of the system must be a 

linear operator.  



Finally, we learnt about the definition of autonomous system. So, if you have a linear first order 

ODE and you are in a position to rearrange the ODE such that  

 

𝑑𝑥

𝑑𝑡
 is given by some function of x and t then the system would be called autonomous if and only 

if the right-hand side f is going to be only a function of x.  

Which means if you can express the system as 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥),  such that f is not an explicit function 

of time then the system is called autonomous. Now all of these concepts can be applied to 

examples which come from process industries and we are going to take one such example.  
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So, let us look into the example today what we have in front of us is the schematic for the 

system we have a solid body which is maintained at a temperature T0. So, the solid body has a 

temperature T0 and the body is dropped in a reservoir which has a temperature of T∞. So, liquid 

reservoir which is at a temperature T∞ reservoir by definition means that the temperature of the 

reservoir is not going to change which means T∞ is going to be a constant in your in our entire 

analysis T∞ is going to be considered constant.  

So, now when you drop a body which is at temperature of T0 into a liquid which is at a 

temperature of T∞ such that T∞ is never going to change then what is going to happen to this 

system physically. What is going to happen is that the temperature T which is the instantaneous 

temperature instantaneous temperature of the body is going to change.  

So, the instantaneous temperature of the body is going to change and what is the governing 

equation that it would follow the governing equation can be determined quite simply using 

energy balance.  
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So, the governing equation is in front of you where  
𝑑𝑇

𝑑𝑡
  the time rate of change of temperature 

of the body at any instant of time so T is the instantaneous temperature of the solid body is 

given as 

𝑑𝑇

𝑑𝑡
= −

ℎ𝐴𝑠

𝜌𝑉𝑐
(𝑇 − 𝑇∞)  

and it is not very difficult to see how this equation comes so you have  

𝑑𝑇

𝑑𝑡
𝜌𝑉𝑐 =

𝑑

𝑑𝑡
𝑚𝑐𝑃𝑇 

which is the energy content of the body.  

So, the rate at which the energy content of the body changes should be equal to the heat transfer. 

Heat transfer to the reservoir of from there is a reservoir depending upon the temperature of 

the reservoir and the temperature of the body. So, you equate these two terms and get this 

model equation.  

So, h is the heat transfer coefficient As is the surface area of the body  𝜌 is the density of the 

body V is the volume of the body c is the specific heat of the body and it is important to know 

that T is the instantaneous temperature so the dynamical variable of interest in our such case is 

T. So, T is a function of small t which is time. So, now let us see what all can we analyze in 

this case. 
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the first question which we need to addresses that what is or are the equilibrium solutions of 

the system. So, let us look into the model equation the model equation is 

𝑑𝑇

𝑑𝑡
= −

ℎ𝐴𝑠

𝜌𝑉𝑐
(𝑇 − 𝑇∞) 

Now what I see is that under certain approximations h, surface area of the body, 𝜌, 𝑉, 𝑐 they all 

can be considered constants.  

I am saying that under certain approximations because over a very wide range of temperatures 

the specific heat of the body may change and so on and this is true for all of the properties 



which have been mentioned here. But if we assume that all of these properties remain constant 

over a temperature range for which we are doing our analysis then what I see is that  

ℎ𝐴𝑠

𝜌𝑉𝑐
= 𝑎 

So, if I know the relationship between these constants and a then I can say that fine for example 

if heat transfer coefficient increases the value of my constant a will increase if the density 

increases the value of my constant a will decrease and so on. So, therefore for the sake of 

mathematical convenience I will replace these constants with a simple constant a making my 

model equation 

𝑑𝑇

𝑑𝑡
= −𝑎(𝑇 − 𝑇∞) 

This has been done just for the sake of mathematical ease. It is not going to change any of our 

results. So, my first question is what is or are the equilibrium solution of solutions of the system. 

In our previous case we saw that  
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥)  if this is the dynamical equation then if I equate 

it with zero, then I get the equilibrium solutions xe as the solution of f(x) = 0.  

So, therefore in this case I can write 

−𝑎(𝑇 − 𝑇∞) = 0 

which gives me 

𝑇𝑒 = 𝑇∞ 

Now does this make sense? So, let us analyze what is going on you have a body and you have 

dropped that body in the reservoir that reservoir temperature is maintained constant and you 

allow the temperature of the body to change.  

So, the temperature of the body changes from T0 which is the initial temperature of the body 

to some temperature. So, when equilibration takes place which means nothing will further 

change with time and  𝑇∞ remains constant the only way that the gradients in the system would 

vanish is when your T becomes  𝑇∞ this is quite a trivial physics which can be extracted out of 

this analysis.  

And this analysis seems to be consistent with what we know either from training or from 

experience so therefore our equilibrium solution is that  𝑇𝑒 = 𝑇∞. So, now what we need to do 



is we need to solve the model equation analytically solve the model equation analytically to 

determine the time evolution how can we know the time evolution of the system and then 

correspondingly develop the phase portrait for the system. So, let us see how this can be done. 
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So, our model equation let us write the model equation our model equation was 

𝑑𝑇

𝑑𝑡
= −𝑎(𝑇 − 𝑇∞)      ………… (1) 

This is our model equation and the initial condition which has been given to us is  

𝑇(0) = 𝑇0 

This is the initial condition which has been given to us.  

Now to solve equation (1) what I will do is I will introduce a new variable and I will say that 

𝑇∗ =  𝑇 − 𝑇∞   ………… (2) 

So, let us say that I have a new variable T* which is equal to  𝑇 − 𝑇∞  and since  𝑇∞  is a 

constant I can write  

𝑑𝑇∗ = 𝑑𝑇   ………… (3) 

So, from equations (2) and (3) and substituting them in equation (1) what I get is 

𝑑𝑇∗

𝑑𝑡
= −𝑎𝑇∗    ……….. (4) 

And does this equation look familiar indeed because in our previous lecture what we saw was 

that we had the equation  
dx

𝑑𝑡
= 𝑎𝑥.  So, it is basically the same equation.  

Which means that the entire analysis that we did in our previous lecture holds true for this 

system as well in fact that is the basic motivation behind introduction of any mathematical 

technique so that if you understand the technique well you can then use that technique for a say 

for a series of different situations.  

The current situation being the analysis of dynamics of change of temperature of a body but if 

analogous equations arise in other situations as well the overall dynamics the features of the 



dynamics will remain the same. So, let us see how we can solve the equation as we solve, 

yesterday we will have  

𝑇∗ = 𝑐𝑒−𝑎𝑡 …………. (6) 

And I need to determine the integration constant that can be done with the help of the initial 

condition so let me plug in the original definition T* from equation (2).  

𝑇 − 𝑇∞ =  𝑐𝑒−𝑎𝑡      ………… (7) 

At t = 0,  T = T0 

So. I will substitute it in equation number (7). So, I have  

𝑇0 − 𝑇∞ =  𝑐 

In other words, I have 

 

𝑇 − 𝑇∞ =  (𝑇0 − 𝑇∞)𝑒−𝑎𝑡 

or finally I can write my time evolution so let me make it explicit that T is a function of small 

t as 

𝑇(𝑡) = 𝑇∞ + (𝑇0 − 𝑇∞)𝑒−𝑎𝑡 ……… (8) 

So, the exponential has -at so this is my final solution to the model equation.  

And this now puts me in a position to draw the phase portraits for the system. So, let us see if 

we can draw the phase portraits for this particular system.  
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So, the model equation is  

𝑇(𝑡) = 𝑇∞ + (𝑇0 − 𝑇∞)𝑒−𝑎𝑡 

So, how can I draw the phase portrait for the system using this model equation? Now as I see 

that so let me draw the coordinates first this is going to be time this is going to be temperature. 

So, my initial temperature is T0.  



So, T0 and my equilibrium temperature is t infinity which means that I am going to start my 

system with temperature is equal to T0 and it should ultimately end up at T∞ so as time T tends 

to infinity my temperature capital T should tend to T∞. So, let me have a condition an initial 

condition which is given as T0.  

So, this is the initial condition of the system and finally the system has to reach the temperature 

T∞. Assuming T∞ > T0. So, you have a water bath which is maintained at say 700C and then 

you drop the sphere or body from the top at room temperature.  

So, this is the typical condition which it would satisfy so let me make a dotted line and another 

dotted line. So, as the temperature reaches t infinity the gradients would become zero. And the 

initial condition is T0. So, therefore your entire system would be confined within these two 

limits you will have T∞ at the top and T0 at the bottom.  

So, now how would you draw lines which correspond to this equation such that the bottom is 

T0 and the top is T∞ you see the function here this is an exponential function an exponentially 

decaying function in fact. So, what is going to happen you will start with T0 and your ultimate 

value T∞ is reached by multiplication of T - T∞ by an exponentially decaying function this is 

how we understand the equation.  

Well, you can understand the equation in other terms you start with T∞ and then you keep on 

adding the difference but the difference itself keeps on reducing exponential with exponential 

with time. So, therefore the way you can look at this is that as at long time intervals the system 

is coming here asymptotically.  

And then it has to start from here so the way we can join these two is like this this is one of the 

phase lines. As I change a as I change a, what can happen is if you start with the same initial 

condition depending upon the system properties you may reach quickly or you may reach 

slowly but asymptotically what is going to happen is that you are going to reach temperature T 

is equal to T∞.  

So, what do we understand from this solution is that if you have  𝑇(𝑡) = 𝑇∞ + (𝑇0 − 𝑇∞)𝑒−𝑎𝑡 

the exponential part of your function will give the curve to the system. What is the importance 

of this parameter a? If a is large if a is large the change will be faster.  

So, therefore if I have a1, a2, a3 then I can write a1 > a2 > a3 in magnitude. So, this is the phase 

portrait for the system but this corresponded to a situation where T∞ > T0 was which means that 

you dropped your body in the oil bath or a reservoir which was at a temperature which was 



greater than the initial temperature of your body. Let us see if we can do this in a reverse 

manner. 
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So, our new situation is like this that you have T(0) = T0 ; Te  = T∞ ; T0  > T∞. So again, I will 

draw the axis this is time this is temperature again my system has two extremities one extremity 

is T0 the other extremity is T∞.   

In the previous case T∞ > T0. Now I have reversed the situation T∞ is now small and T0 is large 

which means that say you have a hot plate a hot steel plate and you quench it in an oil bath to 

reduce its temperature quickly that is what you want to do that is a metallurgical operation 

which is done.  

So, in this case again I have two extremities so let me say that I have T0 here and I have T∞ 

here and these are the extremities. So, all of my phase lines will lie between this these two 

extremities only. Fine and then what I see is that since Te is T∞. So, this is my equilibrium 

temperature this is my equilibrium solution rather so as T → ∞, I should reach here.  

So, asymptotically I should have this solution. So, how do I start from here and reach here 

taking into account the exponential decay which is associated with my model equation. So, if 

we remember our model equation was 

𝑇(𝑡) = 𝑇∞ + (𝑇0 − 𝑇∞)𝑒−𝑎𝑡 

So, what do I do I start with T0 and because of this exponential decay the typical behavior of 

an exponential decay f(x) vs x is this and then this would be augmented with T∞ and T0 - T∞. 

So, the way the phase line would look like is this. This is one of the phase lines.  

I can have same starting initial point and different phase lines all of them would asymptotically 

go to T∞ and so on. And if this is a1 this is a2 and this is a3 three different values for a then as I 

said the magnitude of a will give the quickness of the system to adjust to the new condition and 

therefore in this, I can write a3 > a2 > a1 fine.  

So, and all of these a’s are functions of heat transfer coefficient, surface area, ρ, V, c and so on. 

So, now you can adjust the values of a, As, h, ρ, c, V and so on to get the value of a different 



values of a…. a1, a2, a3 and so on and then you can determine how quickly or slowly will your 

system reach the equilibrium state or it would go to T∞. These are the different solutions.  
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Now, what I can do is I can make another set of phase portraits to give you an idea about the 

solution or the solution behavior. So, I can superimpose both of them I have T here, I have t 

here. So, if this is my T∞, then when T0 < T∞, what is going to happen, I am going to rise 

exponentially I am going to rise like this not exponentially I am going to rise like this and 

therefore for different Ti's…… T01, T02 and so on my phase lines would look like this.  

 

And when T0 > T∞, then what I will see is that I will see exponential decay like this and all of 

them would go exponent go asymptotically to T∞. But now what I see is that this is true when 

a > 0 because your equation was 𝑇(𝑡) = 𝑇∞ + (𝑇0 − 𝑇∞)𝑒−𝑎𝑡. This is true only for a > 0.  

And a in fact was  𝑎 =
ℎ𝐴𝑠

𝜌𝑉𝑐
 . Now, all of these quantities heat transfer coefficient, surface area, 

ρ, this is the density, volume, specific heat they are all greater than zero which means a would 

always be greater than zero had it not been the case. Then how would the phase portrait have 

looked like.  

A physically this is not correct physically this is not correct let me emphasize this but for the 

sake of mathematical completeness if you want to draw the exact same system for a < 0, then 

how would the system look like. Well, you will have again the same equilibrium solution T∞, 

so if you start with T01 start what is going to happen you will not reach here in fact you will go 

down.  

And for T02 > T∞, you would rise here. Now this looks a little weird looks a little weird but this 

is in fact not mathematically inconsistent because what then you will need to do is you will 

need to go so let me draw it again.  
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Now, I have considered negative time as well. So, this is the temperature I have considered the 

negative time as well so a is in fact greater than 0 this how the solutions would look like you 

start with this and this is going to be a solution. So, you start with T0 here you diverge and 

similarly you go here this is T02 and this would be your T∞.  

So, you will need to shift the axis so this is not zero so this point is not zero this is not zero this 

is T∞. You can draw the x-axis like this so this is T. So, now what do we see here? What we 

have seen here is that for a less than for so this has to be a < 0 there is a correction there a has 

to be less than zero.  

So, mathematically if there is a condition such that for the model equation  

𝑇(𝑡) = 𝑇∞ + (𝑇0 − 𝑇∞)𝑒−𝑎𝑡      ;  𝑎 < 0 

making the exponential positive this will be the phase portrait physically for the current 

situation this phase portrait will not hold true. But you may tomorrow come across some other 

situation some other system for which you may get similar analysis and then you may be ready 

to understand that the solution behavior would look like this.  

And therefore, what you see is that there is a divergence so the system is unstable this line this 

equilibrium solution, solution is unstable.  
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Whereas for the current system for the current system when you drew the phase portrait like 

this, this is the equilibrium solution temperature time the equilibrium solution is like this or it 

looks like this T equilibrium you will see that the equilibrium is stable. In fact, what I can do 

is I can make this particular portrait also mathematically complete we have considered time 

only positive what you can do is time temperature everything for the sake of mathematical 

completeness negative so what is going to happen is you can draw phase lines like this these 

would be the phase lines.  

And all of them would asymptotically reach Te = T∞ as time t → ∞. So, we would stop here and 

continue the discussion on this particular topic and see whether we can actually see these details 

using an alternative method. Thank you.   


