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Hello. We are studying dynamical systems, and what can be more dynamical than our 

atmosphere itself. We see changes in its temperature, changes in humidity, changes in wind 

pattern and so on. And this takes place on daily basis, in fact, also many times on hourly 

basis. If we see the atmosphere throughout the Earth, then at the same given time at different 

locations, different phenomena are going on.  

Over a celestial time scale, the climate over different regions have changed. Glaciers due 

human activities, are turning out to be water bodies and we may expect even desserts there in 

future. But on a very, very small time scales, like in days or hours, we see changes in weather 

patterns. You have perfectly dry weather in the morning and by afternoon or evening, you 

may expect a rainfall.  

So, there is a lot of change which is going on in the atmosphere and therefore it is very 

interesting to see and consider that our atmosphere is in fact, a very dynamical system. So, 

won’t it be interesting to model the dynamics of atmosphere? Well, it would be except that it 

is going to be an incredibly difficult problem. We will take a simple in fact, rather simplified 

version of it in today's lecture where we will study the analysis of atmosphere dynamics using 

what is called Lorenz equations.  

So, Lorenz was a mathematician and also a meteorologist from the U.S. And he, I must say 

dared to model the atmospheric activity. We will very quickly see why I am using the term 

dared. But what he did is a very, very simplified model, today what is called Lorenz model or 

Lorenz equation for atmosphere dynamics. 



Although they are incredibly simplified, they give some very in very good information about 

the very nature of the mathematical equations that describe our atmosphere. So, let us look at 

the model and before we look at the model, let us look at various assumptions, which Lorenz 

made.  
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So, Lorenz said that we can consider Earth's atmosphere to be made up of a single fluid 

particle. This itself, can be seen to be an incredible simplification of otherwise very, very 

complex multi-phase, multi component atmosphere that we have today on Earth. But to start 

with, it is not a bad idea to have a simplified form of our system and then see a qualitative 

behaviour of the dynamical system before we actually try to, attempt to make it better or 

more closer to the reality, if I may.  

So, he considered the Earth's atmosphere to consist of a single fluid particle. And this particle 

is heated from the bottom and cooled from the top. Now, is it a fair assumption? It does 

because we know that close to the ground, we have a high temperature and, in an aircraft, if 

you, if you see the screen, which just displays the change in temperature as the aircraft goes 

from the ground level to the cruising altitude, you would observe that the temperature keeps 

on decreasing as you go up.  

So, in fact, the temperature is low at the top and higher the bottom. And then the atmosphere 

is modelled as a two-dimensional fluid cell. We know that atmosphere, the geometry of 

atmosphere is much more complex, but to start with what he did was first, he considered that 

you have a single fluid particle, which we call as atmosphere. It is heated from the bottom 

cool from the top, and it is two dimensional.  

So, let us say that a very simplified geometry for our atmosphere is something like this, two 

dimensional, where you have T1 where you have T2 and T1 > T2, a simplified formulation. 

And then if I have this, what all can I do to perhaps establish the dynamical nature of 

atmosphere? 

What I can do is I can, first of all, I can imagine that I have the temperature difference T1 - 

T2, to be a small quantity, to be a small number. So, if T1 – T2 is small, then I essentially have 

conduction phenomenon in the atmosphere. There will not be any convection currents, and 

therefore one may expect, for such a very simplified version, a linear decrease in temperature 

as I go from bottom of the atmosphere to the top of that atmosphere. 



So, temperature variation, temperature in fact is going to be one of the components of my 

dynamical variable, this is for sure. But as temperature difference, T1 - T2 becomes larger 

convection currents are set up. So, now what I can do is I can write an energy balance 

equation for the system that would give me the variation of temperature as I go from bottom 

to top. 

And since there are convection currents, which have been set up, I should also in principle, be 

in a position to write momentum balance equations, which will give me the velocity field in 

the atmosphere. So, by writing the energy and momentum balance equations, I can write in 

principle, these equations would be partial differential equations because the quantities of 

temperature and velocity would vary not only with time, they will definitely vary with the 

special location as well.  

But under certain approximations, what we can do is we say that we have a purely dynamical 

system and therefore in this two dimensional fluid cell, which I have, I have the variation of 

the convection rate, the horizontal temperature variation and the vertical temperature 

variation as three components of my dynamical vector, which primary tell me the dynamical 

behaviour of my atmosphere. 

A very, very simplified case, but the 3 dynamical variable the three components of my 

dynamical system here can be considered as the convection rate, the horizontal temperature 

variation and the vertical temperature variation. If these three be the case, then can I write the 

model equations?  
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The model equations which Lorenz wrote are in front of you. We have  ⅆ𝑥ⅆ𝑡 = 𝜎(𝑦 − 𝑥) 

ⅆ𝑦ⅆ𝑡 = 𝑟𝑥 − 𝑦 −  𝑟𝑧 

ⅆ𝑧ⅆ𝑡 = 𝑥𝑦 − 𝑏𝑧 

None of these quantities can be used in absolute terms as we are discussing now, like the 

horizontal temperature difference and so on, but they would be related to say horizontal 

temperature difference.  



That would be the quantity y, the quantity, which would relate the vertical temperature 

variation would be z and the quantity, which would relate to the convection currents or the 

velocity field would be x. So, I have three equations in front of me. Let us see, what kind of 

equations are these? I have my dynamical variable for the system as [x y z]
T
. So, what is the 

order of the system?  

The order of the system is 3. I have three equations and all the three equations are the first 

order or these. So, the order of equation is 3. Is the system linear or non-linear? The system is 

nonlinear. You can see in equation number 2, you have xz on the right hand side. In equation  

number 3, you have xy on the right side. So, it is not very difficult to see that the quantities 

are, the equations are in fact non-linear. And what about autonomous nature? The equations 

are in fact autonomous.  

So, I have in fact, Lorenz model, the atmosphere, atmospheric dynamics by a third order 

system, as a third order system, which is also autonomous and non-linear. And then you can 

see that there are three variables, which appear. You have 𝜎. 𝜎 is the Prandtl number, a 

quantity, which you must have come across in heat transfer. I have r, the Rayleigh number, 

which signifies the natural convection in the system. And b is a parameter, which is related to 

the system size.  𝜎 (Refer Slide Time: 12:35) 

So, the system which I have in front of me is this. So, equation is  ⅆ𝑥ⅆ𝑡 = 𝜎(𝑦 − 𝑥) 

ⅆ𝑦ⅆ𝑡 = 𝑟𝑥 − 𝑦 −  𝑟𝑧 

ⅆ𝑧ⅆ𝑡 = 𝑥𝑦 − 𝑏𝑧 

And let me assign these as f1, f2, and f3. If you have understood our general approach till now 

it should be very apparent to you that why we have assigned these three quantities as f1, f2, f3. 

Let us see the first thing which we need to analyse.  

Whenever we have a system of equation in front of us, dynamical system of equation, then 

what we do is we try determine the equilibrium solutions. So, we can determine the 

equilibrium solutions by f1 = f2 = f3 = 0. This is how we would determine this. So, therefore I 



can write 𝜎(𝑦 − 𝑥)  =  0 from where I get xe = ye. The first relationship between equilibrium 

values of x and y. 

From f2 = 0, I can write rx - y - xz = 0. You can call this equation 1, equation 2, equation 3, 

and this says equation 4. So, from equation 4, I can write r xe - xe - xeze = 0, from where I get 

xe (r – 1 – ze) = 0. So, this means that xe = ye = 0. And if xe = ye = 0, is the case, then from 

equation number 3, I can write xeye - b ze = 0, and for xe = ye = 0, I get ze is equal to 0.  

So, therefore I have one equilibrium solution, [xe ye ze]
T
 is [0 0 0]

T
. Considering the other 

case, I have ze = r - 1. So, let me call this equation 5. So, what will I do? I will use equation 5 

in equation 3, and also use the condition of xe = ye. So, I have xe
2
= br - 1. In other words, xe = 

ye = ±√𝑏𝑟 − 1  

So, therefore I get my equilibrium solution, [xe ye ze]
T
 as what? Well, first solution as [0 0 0]. 

Second solution would be √𝑏𝑟 − 1, ye would also be √𝑏𝑟 − 1. And the third one is simply r - 

1. What would be the third equilibrium solution? I have −√𝑏𝑟 − 1, −√𝑏𝑟 − 1 and br - 1. So, 

you have three equilibrium solutions for the system in front of you. One of the solutions is the 

origin, while the others, other two are non-origin solutions.  

If I look at the three solutions, I see that, well, I always have the condition that b > 0, r > 0, 𝜎 

> 0. That is the fundamental condition that we had set up for our model. But what I have in 

solutions 2 and 3 is √𝑏𝑟 − 1. And all I know is r should be a positive quantity. So, therefore 

for r which is less than 1, I will have an imaginary solution.  

And since these variables correspond to the physical quantities, I say that for r < 1, I have 

only one solution. And that solution is [0 0 0]. So, let me repeat. For r < 1, I have only one 

solution, and that solution is [0 0 0]. And this basically corresponds to the condition that there 

are no convective currents in your system. But when r becomes equal to 1, you have three 

solutions, but the three solutions are equal, [0 0 0]; [0 0 0] and [0 0 0]. 

And when r becomes greater than 1, then you have three solutions, first solution is [0 0 0]. 

Second solution is √𝑏𝑟 − 1, √𝑏𝑟 − 1, r - 1. And the third solution is − √𝑏𝑟 − 1, − √𝑏𝑟 − 1, 

r - 1. So, therefore we have a system which has a bifurcation. The system has a bifurcation at 

r = 1. The system has a bifurcation at r = 1. Let us analyse the system further.  
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Let us write the equations again. I have 
ⅆ𝑥ⅆ𝑡 = 𝜎y. So let me simplify this as 𝜎y - 𝜎x. And let 

me call this as f1. I have 
ⅆ𝑧ⅆ𝑡 = rx - y - xz. This is equal to f2, let us say. And 

ⅆ𝑧ⅆ𝑡 = xy - bz. And 

let us call this as f3. Now, whenever I have a higher order non-linear system, which I perhaps 

cannot trivially solve by hand, analytically, what I do is I tend to linearize the system. 

So, I would first try to determine the general Jacobian of the system. So, to determine the 

general Jacobian, the entries that I would have are these. I have 
𝜕𝑓1𝜕𝑥  = -𝜎. 

𝜕𝑓1𝜕𝑦 , this is going to 

be equal to 𝜎 and  
𝜕𝑓1𝜕𝑧 , this is going to be equal to 0.  

I will differentiate now f2 with respect to x, y, and z. So, 
𝜕𝑓2𝜕𝑥  = r - z, 

𝜕𝑓2𝜕𝑦  = -1. And del  
𝜕𝑓2𝜕𝑧  = - 

x. Finally, 
𝜕𝑓3𝜕𝑥  would be y, 

𝜕𝑓3𝜕𝑦  = x. And  
𝜕𝑓3𝜕𝑧  = b. So, what is the general Jacobian, which I can 

write from here?  

The general Jacobian would be  

J = [ −𝜎 𝜎 0𝑟 − 𝑧 −1 −𝑥𝑦 𝑥 −𝑏] 

And then what I need to do is I need to determine this Jacobian at the equilibrium solutions, 

and then determine the corresponding eigen values. So, let us write down the equilibrium 

solutions. The equilibrium solutions, which we wrote were like this,  

[𝑥𝑒𝑦𝑒𝑧𝑒 ] = [000] [ −𝜎 𝜎 0𝑟 − 𝑧 −1 −𝑥𝑦 𝑥 −𝑏] 

These are the equilibrium solutions. So, now let us remind ourselves of the procedure. We 

linearize the system. How do we linearize the system? By taking the partial derivative of all 

the functions, f1, f2, f3. Here, you see, I have 
𝜕𝑓1𝜕𝑥  = - 𝜎 and so on. I collect all the elements and 

write the Jacobian. You can see the Jacobian on the left hand side, the Jacobian is 

[ −𝜎 𝜎 0𝑟 − 𝑧 −1 −𝑥𝑦 𝑥 −𝑏] 

And now you will determine this Jacobian at the equilibrium solution. So, for example, The 

Jacobian at [0 0 0]
T
 is what? [ −𝜎 𝜎 0𝑟 − 1 −1 00 0 −𝑏]. This is the Jacobian at [0 0 0]. And now 



from here, I would determine the eigen values. So, I have the eigen values ready with me. So, 

λ1 is -b, λ2 is 
12 [−(𝜎 + 1) + √(𝜎 + 1)2 − 4𝜎(1 − 𝑟)] 

 

I encourage you to determine the eigen values and make sure that this is what you get. And λ2 

is 
12 [−(𝜎 + 1) + √(𝜎 + 1)2 − 4𝜎(1 − 𝑟)]. So now, why should I determine the eigen 

values? Well, I would like to determine the eigen values to assert the nature of the solutions. 

The eigen values corresponding to [0 0 0] is in front of me. 

So, if I know the numerical value for λ1, λ2 and λ3, this has to be λ3, λ1, and λ3 by substituting 

the values of various constants, various parameters that I have in my system, then I can 

comment upon the nature. For example, b is always positive. That is what we had assumed in 

the beginning of this lecture. So therefore, λ1 is always going to be negative. 

Similarly, when r is between 0 and 1, when r is between 0 and 1, you will find that λ2 < 0 and 

λ3 < 0. So, how can I, what can I comment upon the particular solution, the particular 

equilibrium solution [0 0 0]. So, the condition, when b is a positive number, 𝜎 is a positive 

number, r is a positive number between 0 and 1. Then my eigenvalues λ1, λ2, and λ3 are all 

negative, which means I have a sink solution. 

So, let me write here. I have a sink solution at [0 0 0]. Now, when I look at [λ1 λ2 λ3], what I 

see is b is always positive. So, therefore λ1 is always negative. The conditional situation 

comes only for λ2 and λ3. So, therefore your point [0 0 0] may a saddle solution as well, it 

may be a saddle solution as well, depending upon the value of the parameter r. And we 

actually saw previously, in fact, wrote that the system as a bifurcation at r = 1.  

So, therefore, depending upon the value of r you can either have a sink solution at [0 0 0] or 

you can have a saddle solution at [0 0 0]. And you can do the similar analysis for the solution √𝑏𝑟 − 1, √𝑏𝑟 − 1, r - 1, and the third solution −√𝑏𝑟 − 1, −√𝑏𝑟 − 1, r - 1. So, what we will 

do today is we will stop here, and we will take one specific case of a set of parameters, the set 

which was used by Lorenz itself, and try to analyse the behaviour of this system of equation. 

We will do this in the next lecture. Bye. 

 


