
Advanced Process Dynamics  

Professor Parag A. Deshpande  

Department of Chemical Engineering 

Indian Institute of Technology, Kharagpur  

Lecture 36  

Analysis of infectious disease dynamics 

 

 

 



 

 

 

 



Hello, and welcome back. In the last week, we started off with analysis of nonlinear 

dynamical systems in higher order.  

(Refer Slide Time: 00:37) 

Now, we saw the underlying mathematical formulation and also took up very interesting case 

of diabetic operation, diabetic transient operation of a CSTR. As I have mentioned before, we 

will take up more physical examples. And in this week, we will take two more examples. 

Today, we will start with an interesting case of analysis of infectious disease dynamics. So, 

since the beginning of 2020, the world has been experiencing the pandemic caused by 

COVID-19. 

Not only has the disease devastated the entire world, but it has also invoked certain 

interesting discussions among the community, both scientific as well as people at large. that 

how to make predictions about the evolution of infectious disease. Or when can we say that it 

would result into an epidemic, or in today’s case, as the conditions prevail in the world, 

whether it would result in a pandemic or not. 

There has also been a lot of discussion on the mathematical models which predict such a 

phenomenon and whether or not these models are applicable, whether or not this model 

would be successful and why under certain cases they are not proving to be correct in making 

predictions and so on. So, today, what we will do is we will try to understand some basics of 

the mathematical methods, which go for modeling the dynamics of infectious diseases. 

In fact, we can understand that there are a lot of agencies worldwide as well as in India, 

which maintaining the data of the people which are getting infected, which are getting 

recovered, which unfortunately succumbing to death and so on. So, we understand that the 

population under a certain category. For example, the population of the recovered persons is 

changing with time. 

The population of infected ones is changing with time, the population of confirmed cases is 

changing with time. So, therefore, one can understand that we are actually dealing with a 

dynamical system, where certain category of population is changing with time the number is 

changing with time and therefore, it makes the system a dynamical system and therefore, one 

may expect that we can analyze the dynamical behavior of the system. 

And that would, in principle put us in a position to predict the future cause of the pandemic. 

So, in principle, we must be in a position to tell whether, in future the pandemic would 



prevail or not, when it is going to die out and similar questions may be answered. So, let us 

look into the first and the simplest model and the model assumptions here in front of us.  

(Refer Slide Time: 04:10) 

So, we have the model assumptions that, this particular model is the famous SIR model. It 

was put forward by Kermack and Mckendrick as early as in 1927. So, it is nearly, it is around 

95 years that this particular model has been around. And since this was the first model that 

attempted to describe the dynamics of infectious diseases, obviously, this was a simple 

model, and very elementary in fact. 

But even with such an elementary model, we can actually describe the dynamics of infectious 

diseases very well as long as the underlying assumptions which were made during the 

development of the model hold true. So, let us see what all are the assumptions. The first 

assumption is that the total population is constant. 

So, this means that you are not considering the cases where there is an exchange of 

population, which means there is an out flux of the population from the region or there is a 

continuous influx of the population from the region. So, you consider a fixed, a constant 

number of members in the community. Let us say that number is N. 

And throughout your dynamics, that total N does not change. There would be 

compartmentalization within this number N. So, these days you can see confirmed cases, 

infected cases, deaths and so on. So, these are the smaller compartments within this larger 

population and it has been assumed that the total number N remains constant. 

Then the population is divided into three compartments as I said that you would be dividing 

the entire population N into three compart, into various compartments in SIR model, there are 

three compartments. What is the first compartment? Susceptibles, denoted by S. So, all of 

those members of this population which can potentially catch the disease are referred to as 

susceptibles. 

So, since this is an infectious disease, we are considering a disease which is infectious which 

means, which would spread from one member to the other member. If you introduce some 

members which are already infected in the population, then the members which are 

susceptible to catch this disease would be referred to as S, which means susceptibles. 



The second compartment is infectives, I, mind that these are infectives not infected. Infected 

means the ones which have contracted the infection. Infectives means that not only these 

members have contracted the infection, they are now the members which can spread infection 

to others. So, infective means that they have infection and then they can spread infection to 

other members of the population. 

We will denote them by I. And thirdly, the removed class. Often this letter R is confused with 

recovered. In the Model SIR, R is not recovered, but removed class. What is the meaning of 

removed? Well, recovered is a subset of this removed class. So, a susceptible population will 

contract the disease to come to the compartment I, which means, which are infective. 

The infective ones would spread the infection potentially and perhaps a part of those 

incentives may get recovered. So, those that subset of the population I which has been 

recovered from the population would become, would act as R but we are referring R as 

removed and recovery is only one of the mechanisms of removing the population from 

consideration. 

Well, the population which undergo death is the population which is no more susceptible, 

obviously, and they can also not spread further infection. So, they are not infective. So, that 

population has been removed from consideration and therefore, one of the mechanisms apart 

from recovery is death, for example. So, all of the mechanisms following which the 

population is no more susceptible and it is no more infective will be referred to as removed. 

So, those who have either had disease or recovered, so, one of the assumptions is that once 

you have contracted the disease and you have recovered from it, you would no more contract 

the disease again. So, recovered and further stages are the ones which are considered as 

removed. Immune, so, a particular group may have a higher level of immunity or certain 

other conditions which would render them immune. 

They may be vaccinated. So, again, that particular class may be considered as removed and 

are isolated until recovered. So, we are not going into the details of the steps which have been 

undertaken to make this population insusceptible to further contraction of the disease. We are 

have lumped all of these cases into one category, which is called R. 

Now, the next assumption is that recovery confers immunity to the individual. In case of a 

COVID-19 for example, you must have heard that once the person recovers, at least for some 



period of time after recovery, he is no more susceptible to contracting the infection again. So, 

once you recover, you have no path from going from R to S again. 

So, susceptibles become infected, infected become removed from the population altogether. 

The removed population can no more become susceptible again. Well, in certain diseases it is 

possible, in certain diseases, this does not hold true. So, for diseases for which this particular 

statement holds true, that recovery confirms in confers immunity to the individual, our 

analysis will hold true. 

Then, the incubation period is zero. What is the meaning of the statement that the incubation 

period is zero? This simply means that there is no period between catching the infection and 

becoming an infective. Which means that as soon as an individual, a susceptible individual 

catches infection, he becomes infected. So, there is no period during which there is a doubt 

whether the person is infective or not, that incubation period has been considered to be zero. 

Finally, the population is well mixed. For COVID-19 for example, makes sense that the 

population is well mixed means that there is an equal probability of every individual to be 

coming into the contact of the other individuals in the population thereby spreading the 

disease via infection. So, the population is well mixed. Again, in case of COVID-19, this 

assumption holds true. There is no reason for not making this assumption. 

For certain diseases for example, sexually transmitted diseases, this assumption may not hold 

true that every single individual has the equal probability of spreading infection to every 

other individual in the species, in that particular population. So, for diseases like influenza or 

COVID-19, this particular assumption that the population is well mixed holds true. Now, 

when we have these assumptions, what mathematical statements can be made? Let us see if 

we can make some mathematical statements.  

(Refer Slide Time: 13:28) 

So, the assumptions are now, now, the analysis becomes a little more mathematical that the 

gain in the infective class I, the gain in the infective class is at a rate proportional to the 

number of infective as well as susceptibles. Let us see if it makes sense. So, if there are more 

number of susceptibles, there is a higher probability that you would get infected or the entry 

to the infective class would be higher, if there are more number of susceptibles.  

So, therefore, the gain in infective class is at a rate proportional to the number of N 

susceptible, now what about the number of infectives, if there are more number of infected 



persons, they would spread more disease, and therefore, the rate of change of infectives 

would depend upon the number of infectives itself. So, the gain in infective class is at a rate 

which is proportional to the number of infectives and susceptibles both. 

Which means, we will have 
𝑑𝐼𝑑𝑡 = 𝑟𝑆𝐼, where r is a constant in fact, it is a positive constant. 

So, I can write here 
𝑑𝐼𝑑𝑡 = 𝑟𝑆𝐼, where r is a positive constant. Now, this is the rate at which the 

population would enter the compartment of I, larger number of infectives will result in more 

number of people coming in the compartment of I, larger number of susceptibles will result in 

more number of people coming to I. 

Now, as more number of infectives are present, since infectives will subsequently result into 

the removed ones, by recovery, by death or by any other mechanism, now, you can say that 

the out flux from the compartment I would be directly proportional to the number of 

members in I itself. So, the rate of removal of infectives to the removed class, I to R, would 

be proportional to the number of infectives and now, the constant associated constant is a. So, 

therefore, I can write this as minus a I.  

So, now I have an equation which is given as 
𝑑𝐼𝑑𝑡 = 𝑟𝑆𝐼 –  𝑎𝐼, but then if I look into the three 

compartments, I have a compartment S, I have a compartment I and I have a compartment R, 

how can I represent various flows which means the movement or transfer of population from 

one compartment to the other compartment if I have these three compartments? 

I know that susceptibles are the ones which would become infected. So, therefore S will have 

an arrow directed towards I. Now, invectives would ultimately get recovered or removed. So, 

therefore, I can draw an arrow which is like this. Can I have any more arrow? For example, 

can I have R going to S. No. Following our previous assumption that infection confers 

immunity, the recovered ones cannot go to the susceptible class. So, therefore, my flow for 

this particular system can be written as S going to I going to R. 

This is the trend for my flow of population among different compartments. Now, in my case, 

the number of susceptibles is changing with time, the number of infectives is changing with 

time, so is the number of removed but I have only one equation here, which is 
𝑑𝐼𝑑𝑡 = 𝑟𝑆𝐼 –  𝑎𝐼. 

I should be in principle in a position to write the corresponding dynamical equations for S 

and R as well. Let us see what those equations are.  
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So, if I have the equation for I given as 
𝑑𝐼𝑑𝑡 = 𝑟𝑆𝐼 –  𝑎𝐼, equation number 2 on the left hand 

side, then if I know that my flow is S going to I going to R then it is not very difficult to see 

that for I, I have two fluxes. So, far I, I have an influx which is coming from S and I have an 

outflux which is going to R. What is the relative contribution? 

This contribution is a I and this contribution is r S I. a I would be negative because I is going 

to R and r S I  would be positive, because S is going to I. So, if these are the only flows in the 

system, then it is not very difficult to see that I can write dS/dt is equal to what, S is going to 

I, so, this quantity which is positive for the arrow going from S to I would become negative 

for S, so it would become -rSI .  

I am simply following the arrows and writing the equations. Then, similarly, I can write dR/dt 

is equal to now for the arrow from I to R for I, I had minus a I and that exact same population 

would enter the compartment R. So, therefore, for R I will have a I plus. And therefore, I 

have three dynamical equations here. Since I have three dynamical equations, I should have 

corresponding initial conditions as well. 

So, how does typically physically this whole constitution of epidemic or pandemic work? 

You have a population and in that population you introduce some infected members. So, in 

the current situation what happened in the world, the infection is set to have started from 

Wuhan and then people started flying from Wuhan to different parts of the world. 

So, therefore, you started introducing infected members in different parts, geographical 

locations of the world. Now, those members, which have been infected, which were 

introduced to the population, if you have paid attention are called patient zeros. So, the first 

patient which would get infected would be called Patient one, because that will be the first 

person who is getting infected. 

So, that is the secondary infection which is resulting into basically the spread of infection.  

Otherwise, the person which originally had the infection and which was introduced to the 

population is called patient zero. So, now, there is no reason for having exactly one person to 

be introduced in the population. 

So, if initial number of members which had infection, which are introduced to the population 

is I0. So, at time t is equal to 0, I will have I 0, the initial number of members, which had 



infection, which were introduced to the population. At the moment you introduce the infected 

members to the population, the rest of the population becomes susceptible, assuming well 

mixed population.  

Now, you can remove you may not consider some of the populations members of the 

population based upon other criteria. Otherwise, the rest of the population is now susceptible. 

So, therefore, S at t = 0 will become S0, some natural number, I also, some natural number. 

Now, at the beginning of the pandemic or the epidemic of the spread of infection, you do not 

have anyone who is recovered or removed or died or had any kind of other mechanism for 

removal. So, therefore, you say that R at t = 0, fair assumption is 0. You start with 0 and there 

is no one which is removed, because you are beginning the spread of the infection.  

So, therefore, we introduce R(0), number of members which are infected and the susceptible 

population at the beginning is zero. Finally, we are looking at how the population growth in 

various compartments takes place. Therefore, I have r which is greater than 0 and I have a 

which is greater than 0. 

I have r > 0 and I have 1 > 0. r is called the infection rate, the rate at which infection spreads 

because that would be the rate you see here in this box. This would be this would be, this 

would correspond to the rate at which S goes to I. And removal rate, the infective are going to 

be removed so, this would correspond to the location here.  

(Refer Slide Time: 26:01) 

So, if this be the case what can be done? Now, if I have these three equations in front of me, 

what can be done is that I can ask several questions. So, the first question can be that given r, 

a, S 0, the removal rate, the infection rate and the initial number of susceptible population, 

members of the population and you introduced some number of incentives in the infected 

members in the population, whether the infection would spread or not? 

What is the guarantee that there would be an epidemic? What is the guarantee that the 

infection would spread? We need to know this. Then, if the infection does spread, what will 

be the dynamics? Would it spread fast? Would it spread slowly? How would it happen? 

Third, well, if it does spread, when would it start to decline? 

And finally, when can you declare that yes, we are having a epidemic or in today’s situation, 

we are going to have a pandemic, when do you declare that the situation is really terrible, that 



we need to be vigilant and we need to watch our own behavior so that the pandemic does not 

spread and result into a disaster. 

All of these questions would be answered potentially by analyzing the dynamical behavior of 

our system. So, let us see, we can always solve the, try to solve the equation, well, I cannot 

comment whether we can always solve the equation, but we can try to solve the equation but 

can we have some at least qualitative idea about these, the system which we are currently 

considering.  

(Refer Slide Time: 28:00) 

So, we have three equations, we have 
𝑑𝑆𝑑𝑡 = −𝑟𝑆𝐼, I have the 

𝑑𝐼𝑑𝑡 = 𝑟𝑆𝐼 –  𝑎𝐼, and I have 𝑑𝑅𝑑𝑡 = 𝑎𝐼. So, equation 1, equation 2 and equation 3. So, now, before I try to answer any of the 

questions, my first question would be is this a dynamical system? 

The answer is yes, I have three first order ODEs in time, which describes the evolution of my 

system. So, therefore, in fact, I am dealing with a dynamical system. And what is the 

dynamical variable? So, my dynamical variable is S, I, R transpose, what is the order of my 

system, again not very difficult to see the order of the system is 3. I have higher order system. 

Linear or nonlinear? This is a nonlinear system I am leaving this as an exercise for you to 

assure yourself that we are in fact dealing with a nonlinear system, not very difficult to see 

from here, anyway. And finally, this is also what you can assess, that this is an autonomous 

system. 

Since, this is a nonlinear system, we might have difficulty actually solving this explicitly. We 

would in fact try to do that but let us first see if we can have some qualitative idea.  So, I have 𝑑𝑆𝑑𝑡 = −𝑟𝑆𝐼. And therefore, I can write dS/dt at t = 0 is equal to - r S0 I0. 

What would this give me? This would give me an idea whether the number of susceptibles in 

my system at least during the early stages of the pandemic would increase or decrease with 

time. So, this is S, this is t and I know that r > 0, S0 is a population greater than 0, I0 

population greater than 0 which means dS/dt, at t = 0 is always less than 0. 

Which means that my gradient during the initial stages of the pandemic or epidemic would be 

negative, number of susceptibles would come down. But if I see dS/dt at any point of time, 



then what I see is R is a constant always positive, S is a population of susceptibles always 

positive, I is population of infective, always positive.  

So, therefore, my slope irrespective of time is always going to be negative. So, therefore, this 

is going to continue, S the population of S will always decrease with time. Can I say the same 

thing about I? So, I have dI/dt, at t = 0 is equal to what? rS0I0 - aI0 from where I can write this 

as rS0 - aI0. 

Now, the product has to be either positive, greater than 0 or less than 0, I cannot say anything 

about them at this point of time. I know that I 0 is always positive. So, therefore, if r S0 - a is 

greater than 0, my dI/dt at t = 0 would be greater than 0. And what is the meaning of this? 

The meaning of this is that if the condition rS0 - a > 0, is satisfied during the initial stages of 

your pandemic, then you would expect an increase in the infected persons or infectives in the 

population with time. The infectives will not die down, they will increase with time.  

And can I quantify this further, so, I can write this as S, rS0 - a must be greater than a, or in 

other words rS0 / a must be greater than 1. So, I have a number rS0 / a and if this number is 

greater than 1, then you can say right at the beginning of the pandemic itself if you know S0, 

if you know I, if you know a that pandemic is going to happen. 
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And what is the name that we have given to this quantity rS0 - a, if you have been following 

news, I am sure, it is not very difficult to for you to recall that this number is called 

reproduction number R0. All of these days you must be coming across this term R0, 

reproduction number and it is nothing but rS0 / a. 

It is a number of secondary infections induced by one primary infection in this wholly 

susceptible population, which means during the beginning of your pandemic or epidemic, if 

this quantity R0 > 1, then every individual which is infected is infecting more than one 

individual in the population and therefore, there would be an, there would be a growth in the 

infection, and this is the popular R0 factor, which we have seen.  

Similarly, at any point of time t, you may define Rt, which would be rS at any point of time t 

multiplied by a. So, we have in fact, just after having a look into the equation, come up with 

the popular R0 parameter, which will tell us, which will give us an idea of whether the 



infections would spread or not. We will look into more details of this particular system in the 

lecture to follow. Till then, goodbye. 

 


