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Let us continue our discussion on reactor stability analysis, we discussed the steady state 

solution for concentration profile and then we got a complex expression for steady state profile 

for temperature. So, the equations were like this and when we solve for steady state temperature 

what we got was an expression of this form 
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So, this was the expression that we had in front of us. Then we said that in order to determine 

the steady state temperature we need to individually draw say the graphs of the left-hand side 

and the right-hand side and the point of intersection would be the steady state temperature.  

Let us see what kind of functions are these, let us first look at the the right-hand side. Now, 
𝐹

𝑉
 

is a constant, F is a constant, V is a constant. U, A, ρ, Cp...... all of these are constants. So, let 

me say that 
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Further everything is the system is assumed to be at steady state so feed rate would be constant, 

temperature of the feed would be constant, the material properties have been assumed to be 

constant, so U, A, V, ρ, Cp....... everything would be a constant.  

So therefore, I can write 
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 So therefore, in light of this the right-hand side would be 

 

𝑅𝐻𝑆 = 𝑝𝑇𝑠 − 𝑞 

 

and what kind of function is this, this is simply a linear function with p and q as constants. So 

not very difficult to see that you would have simply, and what kind of quantities would p and 

q be, F, V, U, A, ρ, Cp........ are all positive. So, p would be positive, similarly F, Tf, V, U, A, 

Tj, ρ, V, Cp....... are all positive. So, therefore p as well as q would be positive.  

So, 

𝑝, 𝑞 > 0 

Let me plot this and see the nature so, 

𝑓(𝑥) = 𝑝𝑥 − 𝑞 

Not very difficult to see how this plot would look like and we would also set p and q between 

0 and 5 to confirm that they are positive 0 and 5. Now what about the other quantity? So, the 

left-hand side now 
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Let me call 

𝐸
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𝐹
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So, this will make the left-hand side what? 
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So let me try to plot this function now,  

𝑔(𝑥) =
𝑎𝑒−

𝑏
x

𝑐 + 𝑑𝑒−
𝑏
x

 

Now let us also analyze what kind of quantities these are. So, 

𝐸

𝑅
= 𝑏 > 0;   

𝐹

𝑉
= 𝑐 > 0;   𝑘0 = 𝑑 > 0     

Now, rest all the quantities in a, so k0, FCf, ρ, Cp, V...... are positives but 𝛥𝐻 depending upon 

exothermic or endothermic may be positive or negative. So, let us for sure set b as positive, c 

as positive and d as positive. Now I see that the intersection of the two curves so the intersection 

of  𝐿𝐻𝑆 =
𝑎𝑒

−
𝑏

𝑇𝑠

𝑐+𝑑𝑒
−

𝑏
𝑇𝑠

  and a straight line given as 𝑅𝐻𝑆 = 𝑝𝑇𝑠 − 𝑞 should give me the steady state, 

let us see if this is correct.  
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So, let me do one thing this is f and this is Ts......f or g in fact, so let me look into this let me 

zoom in. I will be interested only in the first quadrant but let me zoom in; so that I will be able 

to have a look into this better. So now what I see is that I have the left-hand side involving 

exponential so you have this non-linear curve I have the right-hand side which is a straight line 

you get this and then you get one point of intersection and therefore this is your Ts. So, you fix 

the flow rate, you fix the feed concentration, you fix the jacket flow rate, you fix the jacket 

temperature you get one steady state looks very simple....... very trivial in fact. Let me now do 

a small arrangement with the parameters of the system, and let me then see if I see something 

very different and in fact something very interesting so let me try to change the parameters and 

what I will do is I will change the value of p and q.  



Let us see what I have done. So, I will zoom in further and what I see is that instead of one 

intersection which you would expect to be a unique solution for your system as the steady state 

temperature, now you have three points of intersection so what are the three points of 

intersection; point 1, point 2, point 3, the absolute values do not have any significance here 

because you will punch in various values of heat transfer coefficient, flow rates etc. What I 

want to show you here is that you in fact have three steady state temperatures. Now the question 

is how you can have three steady state temperatures for the same state of your system, same 

flow rate, same temperature, feed temperature, same jacket temperature and so on; well because 

the system is non-linear.  

So, since the system is non-linear now you have the intersection of your heat generation curve 

which is a non-linear curve with your heat removal curve which is a straight line. So, we would 

be interested in knowing the natures of these solutions, so let us clearly point out that you have 

1, 2 and 3; in fact, there can be three intersection points corresponding to three solutions, they 

can be two, they can be one.  

So now if I draw the general trend of this equation here what I see is this, so this is steady state 

temperature this is function f(Ts), g(Ts), one of them is a straight line. I know but the other one 

look like this. In one case you had one intersection point which is like this and therefore you 

have a unique steady state and what is the importance of this unique steady state, Ts1? 

The importance of this unique steady state is that well it makes your life easy because you 

know that I have set my feed temperature, I have set my feed concentration, I have set my 

temperature of the jacket, so I will calculate and I can know what would be my steady state 

reaction which temperature very simple. Now I have a case where you have three intersection 

points 1, 2, and 3, so Ts2, Ts3 and Ts4. So, for the same input flow rate, for the same flow rate 

of jacket fluid, or the same temperature of jacket fluid, for the same feed concentration, for the 

same feed temperature and all the material properties, now you have three steady state solutions 

and therefore it becomes imperative to know that if I am going to give the same values of the 

parameter where am I going to land up?  

Because previously we saw that the variation of the concentration with steady state 

temperature, so this is this steady state temperature, this is the steady state concentration look 

like this. So therefore, when you want to know the steady state concentration you would like 

to know the steady state temperature, but now instead of one temperature I have three 

temperatures and therefore I must know how much is the output which I am going to get from 



my system. Now there is an ambiguity, so what we will need to do is we will need to analyze 

the stability of these points? Before we do that what we also need to do is this that if you have 

well you got this curve by an intersection of the f function which was nothing but the heat 

removal, your g function which was nothing but heat generation and you try to determine the 

intersection. If you rearrange these equations, you can as well draw several other graphs.  
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One of the graphs for example would be this Tj versus Ts here; in general, what would you 

expect? Well, if I set some flow rate of the fluid in the jacket and that jacket fluid has some 

temperature then because of the heat exchange at steady state I must get one unique value of 

the steady state temperature inside the reactor. So, what you should expect is that as my jacket 

temperature goes on increasing, my steady state temperature should go on increasing, some 

kind of a pattern like this.  

So for a jacket temperature you get a unique steady state temperature, but that does not happen 

in fact the way we plotted the previous plot if you rearrange everything as a function of steady 

state temperature on one side and jacket it on the other side what you will get is what you will 

observe is that you in fact get a curve which looks like this, so let me draw the curve which 

you will get from a similar analysis I am leaving the analysis for you I am leaving the 

rearrangements for you to do the nature of the curve and if you put that in decimals you will 

get this kind of a curve the curve looks like this its an S shaped curve.  

So now what is the problem with this curve you would be operating your system at certain 

jacket temperature, so let me draw three vertical lines so these are the operational lines, so if I 

drop the first vertical line here, I get this intersection which means that for this jacket 

temperature Tj1, I will get this steady state temperature Ts1.  

Similarly, I drop this another operational vertical line for Tj2, I get this steady state temperature 

again not a problem Ts2, one jacket temperature one steady state temperature that is fine. Now 

let us have a look into this Tj3, for Tj3 you have Ts3.  

You have three steady state temperatures, but we have previously seen that it is possible that 

you get multiple solutions but all of them may not be stable, so if you have one particular 

solution which is unstable then you would not physically observe that solution and therefore it 



is okay, you need to worry about only the stable solutions, how would you get an idea whether 

a solution is stable or unstable in all of these cases?  

Well, what you will do is you will linearize your system, so how would you linearize your 

system I will assign this as function f or f1 rather; 

 

𝑑𝐶

𝑑𝑡
=

𝐹

𝑉
(𝐶𝑓 − 𝐶) − 𝑟 = 𝑓1 

 

 I will assign this as function f2. 

𝑑𝑇

𝑑𝑡
=

𝐹

𝑉
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−𝛥𝐻
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) 𝑟 −

𝑈𝐴
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(𝑇 − 𝑇𝑗) = 𝑓2 

 

 So, this is an exercise which I am leaving you to do; what you will do is you will do 

𝜕𝑓1

𝜕𝐶
;  

𝜕𝑓1

𝜕𝑇
 

Similarly, you will determine 

𝜕𝑓2

𝜕𝐶
;  

𝜕𝑓2

𝜕𝑇
 

all you need to do is you need to write equations corresponding to 𝑓1 and the functions 

corresponding to 𝑓1 and 𝑓2  as functions of C and T. so r would be converted to  𝑟 = 𝑘0𝑒−
𝐸

𝑅𝑇 𝐶 

and then you do partial differentiation with respect to C and T; when you do this you can write 

a jacobian matrix. The jacobian would be 

 

J = [

𝜕𝑓1

𝜕𝐶

𝜕𝑓1

𝜕𝑇
𝜕𝑓2

𝜕𝐶

𝜕𝑓2

𝜕𝑇

] 

 

And then you will determine this if you remember the procedure, you will determine these 

jacobian matrices at steady states, so steady state let me write it explicitly 



 

J |T31,   J |T32,      J |T33 

 

This will be the first step. Then you will determine the eigen values. It is a two-by-two system 

so there would be two Eigen values; when you plug in all the values of say the heat transfer 

coefficient and density flow rates and so on, when you do this then you will realize that these 

three points which you obtain this point 1, point 2 and point 3 have different stabilities. So, you 

will find after doing this analysis that the middle point T32 is unstable, this point is stable and 

this point is also stable you will get this. Let me repeat what you are going to do; you will take 

function f1 and function f2, you will do the partial derivative, you will determine                          

𝜕𝑓1

𝜕𝐶
,

𝜕𝑓1

𝜕𝑇
,

𝜕𝑓2

𝜕𝐶
,

𝜕𝑓2

𝜕𝑇
, from where you will get the jacobian.  

The jacobian will be determined at these three steady state temperatures; when you determine 

the jacobians, expressions for jacobians, in fact the components for the jacobian at these three 

points you will be in a position to determine the corresponding Eigen values. These eigen 

values will always be such that the middle point is unstable which means that both the eigen 

values would be positive that is the nature we saw previously and the first and the last points 

would be stable, which means that the eigen values would either both be negative or if they are 

complex numbers then the real part would be less than zero, the real part would be negative we 

saw that in both the cases the system is stable. One case would be sink solution the other case 

would be a spiral sink solution. So therefore, when I have this particular diagram in front of 

me let me draw this diagram again and do a further analysis.  
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So, this is jacket temperature versus steady state temperature, the system looks like this so I 

have now this particular bound to my system and this portion will not be observed because this 

is you will do it for large number of different parameters and this portion is unstable, you take 

any of the vertical lines in this portion you will not get any stable solution. So therefore, you 

will not observe the system, so if you start your system vertically in this proximity, if you are 

away from this particular line, you will come to that line, come to that point.  



Similarly, vertically if you start in the proximity of this point, you will end up at that point at 

the steady state, but I am now keeping on decreasing the temperature, my jacket temperature. 

If I keep on decreasing my jacket temperature what I see is that I no more am on that particular 

stable point, because now I am in this unstable region and I come down to this point.  

Similarly, if I start from lower temperature and go, you end up here so this process of going up 

is called ignition because now you are not able to control your temperature the temperature is 

automatically going up because you are in the unstable region, so this process is called ignition 

and this process of coming down is called extinction.  

So, you see an ignition-extinction behavior in case of this adiabatic operation and then this was 

a particular case when you took the x-axis or you did the analysis with jacket temperature, you 

can draw this curve for feed temperature as well. The nature of this curve would be same, 

hysteresis is what you would observe there as well. You can take this x-axis as the space space 

time again you will see a very similar behavior that you will see a hysteresis you will see 

ignition and extinction behavior in your system and then what you will see is that this seemingly 

very simple system which is a CSTR, you are stirring it, you are sending a jacket fluid and a 

very simple reaction A going to B, not reversible simply irreversible reaction, not very complex 

kinetics first order kinetics KCA gives to this exotic behavior in the dynamics of your system.  

So what we saw today is that when you have non-linear dynamics, when you have a CSTR 

which is operating under diabetic condition you may experience dynamics which would be non 

intuitive, intuitively you may feel that if I start with one set of parameters of my system and I 

maintain a steady state then I should get a unique steady state temperature in my system that in 

fact may not happen I should not say does not happen that may in fact may not happen because 

your system is highly non-linear and what is the reason behind this observation of non unique 

steady states? The key reason behind this is that you have an energy removal curve in your 

system which is non-linear sorry not removal, generation curve you have a heat generation 

curve in your system which is non-linear.  

Your heat removal curve was linear, your heat generation curve was non-linear, so there was a 

possibility of intersection of these two curves; one linear one non-linear at multiple points. In 

fact, if you remember our previous discussion, you have saddle node or tangent bifurcation in 

your system in which you can have the intersection at just one point, you can have intersection 

at two points and in this particular case you can have intersection at three points, and because 

you have multiple intersections, you have multiple steady states.  



So now it is important to determine whether the steady states which you observed are stable or 

unstable? That can be done with the help of linearization, why are you assured that this 

linearization would work, if you go back to our theory, you will find that the solutions are 

hyperbolic, which means none of the Eigen values are actually zero.  

So therefore, in certain cases you will get three eigen values, in one case both of the eigen 

values would be greater than zero, they would be positive so and that would happen for the 

middle steady state, your system would move away from that that would be the unstable steady 

state. The others true steady states would be stable they can be sink solutions, which means 

both the eigen values would be negative, they can be so spiral sink solutions which means that 

with oscillations you will settle down to that particular steady state solution. So, we will stop 

here today; we saw how interesting non-linear dynamics of reactors are, we will take two more 

examples of nonlinear dynamics in the week to come, till then good bye.  


