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Hello and welcome back. So, in the previous lecture, we said that we will start now the analysis 

of higher order nonlinear systems. One of the prominent examples, where you would find this 

in a physical example is the reactor dynamics, we will take this particular situation in the next 

three lectures, in fact, but before we go about analyzing a reactor system, which is an incredibly 

complex system, we first must equip ourselves with a basic understanding of higher order 

nonlinear systems, so that we can perhaps use those concepts in studying relatively complex 

problems.  
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So, let us start our analysis, what we have here in front of us is second order system. So, I have 

a system of two equations,  

ⅆ𝑥1

ⅆ𝑡
= −𝑥1 … … … (1) 

ⅆ𝑥2

ⅆ𝑡
= 𝑥1

2 + 𝑥2 … … … (2) 



We will try to analyze the system and see how what can we learn from the analysis of the 

system. So, not every system of equations, which is non-linear can be solved easily by 

sequentially solving individual equations, even if they are coupled. And therefore, linearization 

is something which we generally resort to for solving such systems.  

But one question which arises is that can we always do linearization and analyze the system in 

linear domain and try to make conclusion about non linear domain will it always be possible, 

are there are some situations where we can get in fact, misleading results, this particular 

example and the next one will give us very good examples of when we can actually rely upon 

linearization and when we should not.  

So, let us first try to solve this problem using our usual method, if at all it is possible to do so, 

so, the first equation has only x1. So, I can write 

ⅆ𝑥1

ⅆ𝑡
= −𝑥1 

from where I can write 

𝑥1 = 𝑐1𝑒−𝑡 … … … (1) 

So, solution of course, the question was not very difficult and now I will do this 

ⅆ𝑥2

ⅆ𝑡
= 𝑐1

2𝑒−2𝑡 + 𝑥2 

and if this particular equation is not very difficult to be solved, what I can do is I can write here  

ⅆ𝑥2

ⅆ𝑡
− 𝑥2 = 𝑐1

2𝑒−2𝑡 

I can solve this equation using the method of integrating factor it has to be x2. So, I can multiply 

both sides by e-t.  

So,  

𝑒−𝑡
ⅆ𝑥2

ⅆ𝑡
− 𝑒−𝑡𝑥2 = 𝑐1𝑒−3𝑡 

from where I can write  



ⅆ

ⅆ𝑡
(𝑒−𝑡𝑥2) = 𝑐1𝑒−3𝑡 

and now, I will do an integration. So, I can write this is  

𝑒−𝑡𝑥2 = (−
𝑐1

3
) 𝑒−3𝑡 + 𝑐2 

from where I can write 

𝑥2 = (−
𝑐1

3
) 𝑒−2𝑡 + 𝑐2𝑒𝑡 … … … (2) 

So, I have equation (1) and I have equation (2). So, now, for this particular example, it was 

possible to solve this equation easily and we explicitly got the answers for x1 and x2. So, let me 

write down the expressions. So, let me write down both the equation as well as the expressions.  
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So, the equation is this 

ⅆ𝑥1

ⅆ𝑡
= −𝑥1;        

ⅆ𝑥2

ⅆ𝑡
= 𝑥1

2 + 𝑥2 

and my solutions were  

𝑥1 = 𝑐1𝑒−𝑡;      𝑥2 = (−
𝑐1

3
) 𝑒−2𝑡 + 𝑐2𝑒𝑡 

These were the solutions. Now, can I develop the phase portrait of this system using these 

solutions should be fairly straightforward in the phase portrait what ......on one axis I should 

have x1 .......... on the other axis I should have x2.  

How can I know the curves on x1 and x2? I have the solution, so, I basically have two methods 

first method is pretty straightforward from here I can write 

ⅆ𝑥2

ⅆ𝑥1
=

𝑥1
2 + 𝑥2 

−𝑥1
 



I will solve this equation again not very difficult equation to be solved and then I will get the 

solution for x2 in terms of x1 from that I can draw different curves. There is always a possibility 

there is another simpler solution I have x1 in terms of t, I have x2 in terms of t so, therefore, I 

can make a parametric plot to so as to get x2 and x1.  

So, let me do let me adopt the second approach here I encourage you to solve  
ⅆ𝑥2

ⅆ𝑥1
=

𝑥1
2+𝑥2 

−𝑥1
 and 

plot the equation you should get the same answer. So, let us draw the parametric plot to get the 

equations to get the curves so, I have so, the way I would draw a parametric plot is this very 

simple (𝑐1𝑒−𝑡, (−
𝑐1

3
) 𝑒−2𝑡 + 𝑐2𝑒𝑡). So, now the plot is in front of you and what I can do is I 

can increase the parameter t from -100 to 100.  

The plot is in front of you, one curve is in front of you, so, let me draw this curve and this curve 

would be this. Let me change the values of different parameters so as to get different curves, 

let me change c1 and make it negative.  
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Let us see what happens you get this curve, let me make another change and let us see what 

happens this is what happens. So, I get this curve, I get this curve this curve, I get this curve 

and so on.  

So, this is fine this is the exact have we punched in let us cross check.  

So, this is these are the various plots that I must get various curves that I must get.  
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So, let me draw various curves from what I learned from the calculator I should get these curves 

and then as you would see from the solutions  𝑥1 = 𝑐1𝑒−𝑡. So, therefore, it should have a 

conversion behavior along the x-axis. So, therefore, and then  𝑥2 = (−
𝑐1

3
) 𝑒−2𝑡 + 𝑐2𝑒𝑡. x2 has 

𝑒𝑡 so, it should have a divergent behavior. So, in our previous terms it should have a saddle 



like behavior. So, I can draw the arrows like this it is not very difficult to see that this is how 

the phase portrait would look like. So, this is a saddle like behavior.  

And now, this phase portrait was obtained without explicitly solving the nonlinear equation let 

me do one thing let me linearize this equation. So, I know that (0, 0) is a solution is an 

equilibrium solution to this system of equations. So, therefore, in close proximity of (0, 0), my 

𝑥1
2 will have a very small value. So, if 𝑥1 − 𝑥𝑒 is a small quantity, (𝑥1 − 𝑥𝑒)2 will be an even 

smaller quantity. So, therefore, one way of linearization is so, I have linearized model here and 

I can write the linearized model as this 

ⅆ𝑥1

ⅆ𝑡
= −𝑥1 

This equation was already linear. So, nothing problematic here the problem is that the other 

equation was nonlinear.  

So, I make this other equation a linear by simply setting 

𝑥1
2 = 0 

 

and why am I doing this I can do this only because (0, 0) is my equilibrium solution and in 

close proximity of (0, 0), (𝑥1 − 𝑥𝑒)2 will be a negligible quantity. So, if I write this as 

  
ⅆ𝑥2

ⅆ𝑡
= 𝑥2 

and our linear model, so, I can write this as 

ⅆ

ⅆ𝑡
[
𝑥1

𝑥2
] = [

−1 0
   0 1

] [
𝑥1

𝑥2
] 

and the solution is very straightforward. I know that the solution is going to be 

[
𝑥1

𝑥2
] = 𝑐1𝑒−𝑡 [

1
0

] + 𝑐2𝑒𝑡 [
0
1

] 

We have seen this over and again.  

So, for the linearized case, how would the phase portrait look like? Well, the phase portrait is 

very simple. This is x1, this is x2...... this would be the divergent axis, this would be the 



convergent axis and beyond this, you will have the saddle solution. Please refer to our previous 

lectures to see how we got this solution or this phase portrait and what kind of phase portrait is 

this, this is a saddle phase portrait.  

So, therefore, about very close to (0,0), both the phase portraits give qualitatively similar 

behavior at least qualitatively the behavior is very similar, both of them show saddle solutions. 

Let us now take another example.  
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Now, I have another case where you have  

ⅆ𝑥1

ⅆ𝑡
= 𝑥1

2;   
ⅆ𝑥2

ⅆ𝑡
= −𝑥2 

The solution would be 

𝑥1 =
1

𝑐1 − 𝑡
 ;  𝑥2 = 𝑐2𝑒−𝑡 

So, very simple equations the solutions are in front of you. So, now, can I develop and now, 

what would happen to the linearized form, the linearized form would be 

ⅆ𝑥1

ⅆ𝑡
= 0;  

ⅆ𝑥2

ⅆ𝑡
= −𝑥2 

So, my linearized equation would be 

ⅆ

ⅆ𝑡
[
𝑥1

𝑥2
] = [

0   0
0 −1

] [
𝑥1

𝑥2
] 

Where, 

𝜆1 = 0 ;  𝜆2 = −1  

 Let us now compare the behaviors of these two cases.  
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So, my first nonlinear dynamical solution is this  

𝑥1 =
1

𝑐1 − 𝑡
 ;  𝑥2 = 𝑐2𝑒−𝑡 

Let me draw this. So, I will draw the parametric equation  
1

𝑐1−𝑡
 , 𝑐2𝑒−𝑡. Let me increase this 

from -100 to 100. So, the plot what we get here is the decaying behavior asymptotically reaches 

just to 1 and let me change this, well qualitatively nothing changes now it gets inverted. So, let 

me draw this phase portrait here.  
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The phase portrait would look like this, this is x1, this is x2 so, the phase portraits, the phase 

portrait is this. Now, this is strange because we have never come across any situation till now 

for the analysis of linear systems where the phase portrait would look like this is very different. 

How is this different?  
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Let us see what are the different phase portraits which we came across? Well, we came across 

this. Saddle x1........... x2. we came across this, source x1........x2, depending upon the relative 

magnitudes of 𝜆1 and 𝜆2. The orientation will change so, this is saddle this is source. Then you 

have sink x1........ x2. All three for real eigenvalues, then we have we had centre x1......x2. We 

had spiral source x1.......... x2 and finally, spiral sink x1......x2 and compare it against this 

particular phase portrait which we caught in this study x1........ x2. There is no way that you can 

approximate this phase portrait to any one of the six phase portraits that you studied previously, 

which means that close to this (0,0), solution we are concerned about we anyway know that 

you can make approximation only close to (0,0), the equilibrium solution.  



But even close to (0,0), the equilibrium solution the behavior is very different and why does 

this happen?  
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This happens this happened quite simply because in this particular case, one of your 

eigenvalues was zero.  
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So, we have Hartman-Grobman theorem, which will give us an idea about this. So, according 

to the Hartman-Grobman theorem, the orbit structure so, let us first try to understand what is 

the meaning of orbit structure. Orbit means evolution in a very general sense. So, in a discrete 

system for example, if you start with a point and the dynamical system is a system in which 

the variable changes with time, so, that particular point would keep on evolving in time. So, 

that would result in an orbit, an orbit structure means the arrangement of different phase lines 

in a particular region.  

So, the orbit structure of a dynamical system in the neighborhood of a hyperbolic equilibrium 

point, so, we know the meaning of equilibrium point, but now, we have a new term hyperbolic 

equilibrium point we will come to this definition a little later. So, in the neighborhood of a 

special type of equilibrium point known as hyperbolic equilibrium point is topologically 

equivalent. Topologically equivalent means the geometrical features of the arrangement of the 

phase lines. So, it would be topologically equivalent to the orbit structure of the linearized 

model linearized system.  

So, what is the meaning of this? So, what it means is that, if you take a non-linear system and 

imagine that you have some way to determine its complete phase portrait then you would be 

drawing the phase portrait. So, that phase portrait will be a collection of phase lines and since 

it is a collection of phase lines, there would be arrangement of these phase lines around the 

equilibrium point. And then what you would do, you would linearize the system and again 



determine the topological features which means you will determine the orbit structure which 

means you will determine the arrangement of phase lines close to the equilibrium point near 

the for a linearized system.  

Now, if the equilibrium point is hyperbolic then according to Hartman-Grobman theorem, the 

topological features would be equivalent, which means, the nature the dynamical nature would 

be similar. Now, the only thing which is left is to understand what is the meaning of hyperbolic 

here. Hyperbolic means no eigenvalue will be zero this is important. If there is even one 

eigenvalue, which is zero or no eigenvalue will be zero or will have zero as the real part the 

eigenvalues can be either complex or real. So, in cases where the eigenvalues are all real, no 

eigenvalue should be zero and if the eigenvalues are complex then the real part of none of the 

eigenvalues can be zero.  

And if that is the case then the equilibrium point is called a hyperbolic equilibrium point. So, 

how would you then assess whether it would be possible for you to linearize the system and 

have a guarantee that the linearized system will indeed have the same features as the nonlinear 

system while you will determine the equilibrium point you will determine the eigenvalues and 

with the help of the eigenvalues if the none of the eigenvalues are zero or zero is the real part, 

then you will declare that there was equilibrium point as hyperbolic.  

And if the system has hyperbolic equilibrium points, then you can say, then you can assure 

yourself that you in fact have a system where linearization would work. Now, in the previous 

examples, you could trivially do linearization by setting the non-linear part on the right-hand 

side, zero and that was possible because you had the equilibrium points as (0,0) and so on. But 

what will happen when you do not have the equilibrium point (0,0) or equilibrium solution at 

origin, then you will have to do a proper Taylor series expansion for linearization. Let us see 

that.  
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I have  

ⅆ𝑥1

ⅆ𝑡
= 𝑥1

2 − 𝑥2
2 − 1 = 𝑓1 



and  

ⅆ𝑥2

ⅆ𝑡
= 2𝑥2 = 𝑓2 

What would be the equilibrium solution? Equilibrium solution would be obtained by setting up 

𝑓1 = 0   &    𝑓2 = 0 

So, I can determine the equilibrium point as  

𝑥1
2 − 𝑥2

2 − 1 = 0   &    2𝑥2 = 0  

from where I get 

𝑥2 = 0    &     𝑥1 = ±1 

So, what would be 𝑥1𝑒 and 𝑥2𝑒 ? 

[
𝑥1𝑒

𝑥2𝑒
] = [

−1
0

]    &    [
1
0

] 

Both of them are equilibrium solutions and they are known not [
0
0

].  

In this case, you cannot simply do this linearization trivially by setting up the square terms to 

zero. And therefore, we would determine the linearized model by following the proper Taylor 

series expansion.  
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So, let me see if we can do that. So, 

ⅆ𝑥1

ⅆ𝑡
= 𝑥1

2 − 𝑥2
2 − 1 = 𝑓1 

ⅆ𝑥2

ⅆ𝑡
= 2𝑥2 = 𝑓2 

and  



[
𝑥1𝑒

𝑥2𝑒
] = [

−1
0

]    &    [
1
0

] 

I will determine the Jacobian. So,  

𝜕𝑓1

𝜕𝑥1
= 2𝑥1 ;  

𝜕𝑓1

𝜕𝑥2
= −2𝑥2 

𝜕𝑓2

𝜕𝑥1
= 0 ;  

𝜕𝑓2

𝜕𝑥2
= 2 

So, therefore, my Jacobian matrix is the general Jacobian is 

J = [
2𝑥1 −2𝑥2

0 2
] 

So, in order to get the idea about the solutions what I will do is I will determine this Jacobian 

at [
−1
0

]   and this is going to be 

J = [
−2 0
0 2

]    ; 𝑎𝑡 [
−1
0

]   &  𝜆 = −2, 2    

which have the eigenvalues  

For the second Jacobian, Jacobian at [
1
0

], 

J = [
2 0
0 2

]    ; 𝑎𝑡 [
1
0

]   &  𝜆 = 2, 2    

 

So, from these eigenvalues, I can have an idea about the nature of the solutions, the nature of 

the linearized solutions now, would linearization work in this case, yes linearization would 

work because none of the eigenvalues are zero. So, I can expect the linearization to work and 

finally, can I get an idea about the phase portrait?  
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Well, I can, so, to develop the phase portrait what I would do is I know that my equilibrium 

solutions and corresponding eigenvalues are 

[
𝑥1𝑒

𝑥2𝑒
] = [

−1
0

] ;  𝜆 = −2, 2    &    [
1
0

] ;  𝜆 = 2, 2   

So, let me draw x2 here........ x1 here. Now, my first equilibrium solution is [
−1
0

]. So, this is 

[
−1
0

], my second equilibrium solution is [
1
0

]. So, this is [
1
0

]. Now, [
−1
   0

] is associated with two 

eigenvalues one of which is positive the other one is negative. So, it should have a saddle 

behavior about that point and [
1
0

] is associated with both positive eigenvalues there should for 

it should have a source behavior about that point.  

So, how can I draw phase lines which would both confirm to this particular situation? Let me 

see, can I draw this. So, let me do this what if I drew curves like this. Now what is left? What 

is left is to draw the arrows, so, since this is a source, this would go up, this would go up and 

from here since it is a saddle, it should go like this. So, since this [
1
0

] is a source, you should 

have corresponding arrow here, corresponding arrow here and following the arrows of the 

leftmost portion, you should have the arrow here. And again, you will see here that this is a 

saddle, all the arrows confirmed to a saddle behavior and this is a source all the arrows conform 

to the source behavior.  

So, this is how we will handle higher order nonlinear dynamics, what you do is the first thing 

which you establish is the equilibrium solutions, the equilibrium solutions are arrived by setting 

up the individual equations to zero. Now, in most cases since, it is not possible to use the 

nonlinear model directly, you would like to linearize the system. How can you be confident 

that your linearized behavior is similar to the behavior of nonlinear system? Well, what you do 

is you would establish whether the equilibrium solutions are hyperbolic or not.  

So, following the Hartman-Grobman theorem, if the sorry if the point equilibrium points are 

hyperbolic, which means that none of your eigenvalues are zero, then you can in fact use 

linearized phase portraits and the orbits would be similar to those of a nonlinear system. The 

method which we develop today will be used from tomorrow onwards to analyze the system 

of reactors in case of transient operation of reactors. Till then goodbye.  


