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Welcome back. We are currently studying nonlinear dynamics in this course on advanced 

dynamical systems. 
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In the past few lectures, we came across the concept of bifurcation diagrams. What bifurcation 

diagrams tell us is how the bifurcation in the system works, what are the different values of the 

parameters under which the system can show stability or lack of stability. We will take up this 

concept in a little more detail today. And we will see how are seemingly very similar looking 

dynamical equations can behave very differently and how we can analyze the same using 

bifurcation diagrams. So, let us look into some equations which we have in front of us.  
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The four equations which you see here are four nonlinear dynamical equations where the right-

hand side of these equations are different but they are very similar.  



𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑎𝑥2 … … … (1) 

𝑑𝑥

𝑑𝑡
= 𝑎 − 𝑥2 … … … (2) 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑥2 … … … (3) 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑥3 … … … (4) 

So, they look very similar, but we will see very soon how they are very different in terms of 

their dynamical behavior. So, let us look into the first equation. So, the equation is 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑎𝑥2 

 Have we come across this equation before?  

Well, this equation is our logistic equation for population growth, except that the carrying 

capacity parameter N has been set to one here. So, we know the behavior of this equation very 

well. So, in order to set up the procedure for following equations, equations (2), (3) and (4), let 

us first analyze this equation, so that we know the steps very well. So, the first step that we will 

do is we would set this as f(x). So, 

𝑓(𝑥) = 𝑎𝑥 − 𝑎𝑥2 

The bifurcation diagram is the diagram on which you are on the x-axis you have the bifurcation 

parameter and, on the y-axis, you have the equilibrium solution.  

So, we need to determine the equilibrium solutions of this and this can be obtained by setting 

𝑓(𝑥) = 0 

which means  

𝑎𝑥 − 𝑎𝑥2 = 0 

which means  

𝑎𝑥(1 − 𝑥) = 0 



which means I have two equilibrium solutions for my case, 

𝑥𝑒 = 0 ; 𝑥𝑒 = 1 

So, what would be the axis for my bifurcation diagram, the axis would be simply a versus xe. 

The information that would go in this bifurcation diagram would be that  𝑥𝑒 = 0  and 𝑥𝑒 = 1. 

So, let us draw in detail the bifurcation diagram.  
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So, I have axis as the bifurcation parameter a, equilibrium parameter, the equilibrium solution 

xe, so I have two equilibrium solutions. 𝑥𝑒 = 0, this is the first equilibrium solution, then I have 

𝑥𝑒 = 1, this is the second equilibrium solution. So, let me write here 𝑥𝑒 = 0  and 𝑥𝑒 = 1. Now, 

the question which is in front of me is that on what parts of this diagram is the state system 

stable and where is the system unstable. To do that, I will need to look into the derivative 

conditions. 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑎𝑥2 = 𝑓(𝑥) 

from where I can write  

𝑑𝑓

𝑑𝑥
= 𝑎 − 2𝑎𝑥 

and this 
𝑑𝑓

𝑑𝑥
|
𝑥𝑒

 has to be determined.  

So, therefore,  

𝑑𝑓

𝑑𝑥
|

𝑥𝑒=0
= 𝑎, 𝑎 > 0, 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 ;  𝑎 < 0, 𝑠𝑡𝑎𝑏𝑙𝑒   

𝑑𝑓

𝑑𝑥
|

𝑥𝑒=1
= −𝑎, 𝑎 > 0, 𝑠𝑡𝑎𝑏𝑙𝑒 ;  𝑎 < 0, 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒   

So, let me identify these focuses on this diagram, I have here this point and towards the right 

of this point I have a > 0 and left of this point a < 0. So, for xe = 0 and a > 0, I have this part is 

unstable and this part is stable. Similarly, this point now x = 1 for a > 0, I have stable you can 



see here, so, therefore, this is stable and this is unstable. So, this is the bifurcation diagram, 

which I get for  
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑎𝑥2 which is the logistic population growth model which we have 

studied previously. Now, in a similar manner, can we develop the bifurcation diagram for other 

systems?  
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Let us look into that. So, now my equation is 

𝑑𝑥

𝑑𝑡
= 𝑎 − 𝑥2 = 𝑓(𝑥) 

So, how would I determine the equilibrium solutions? I will set  

𝑓(𝑥) = 0 

which means  

𝑎 − 𝑥2 = 0 

from where I get 

𝑥𝑒 = ±√𝑎 

So, my bifurcation plot will have the curves ±√𝑎. Now, I need to determine the stabilities.  

So, let me do one thing, let me write here  

𝑓(𝑥) = 𝑎 − 𝑥2 

where I get 

𝑑𝑓

𝑑𝑥
= −2𝑥 

so, from here I can make this as 

𝑑𝑓

𝑑𝑥
|

𝑥𝑒=+√𝑎
= −2√𝑎 < 0, 𝑠𝑡𝑎𝑏𝑙𝑒   



 and 

𝑑𝑓

𝑑𝑥
|

𝑥𝑒=−√𝑎
= 2√𝑎 > 0, 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒   

So, how would I use this information to develop the bifurcation plot.  
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So, my equation is 
𝑑𝑥

𝑑𝑡
= 𝑎 − 𝑥2, from where I get  𝑥𝑒 = ±√𝑎 . So, on this curve on this plane 

will draw the axis as a and xe, 𝑥𝑒 = +√𝑎 would look like this. So, this is 𝑥𝑒 = +√𝑎 and             

𝑥𝑒 = −√𝑎 would look like this, this is −√𝑎. Now, I need to determine whether these two parts 

are stable or unstable. So, what did I get from the previous analysis. I got a  

𝑑𝑓

𝑑𝑥
= −2𝑥. So, therefore, 

𝑑𝑓

𝑑𝑥
|
𝑥𝑒=+√𝑎

= −2√𝑎 < 0  which means stable and I can write this here 

stable.  

And then  
𝑑𝑓

𝑑𝑥
|

𝑥𝑒=+√𝑎
= −2√𝑎 which means unstable and this means this is unstable. Now, to 

differentiate the curves on this plane from the axis themselves let me draw these lines using 

these red highlighters. This will simply show that your axis themselves are not the equilibrium 

solutions because in certain cases your axis themselves maybe equilibrium solutions, so, to tell 

that apart, we have used a red curve for representing the equilibrium solutions. So, now, in the 

previous case what you saw was that the bifurcation diagram looked like this. 

 

(Refer Slide Time: 11:21) 

 

In the previous case equation (1), the bifurcation diagram a versus xe and equation (2), the 

bifurcation diagram a versus xe, they looked like this. In the previous case, you had these curves 

and now you have these curves. We can quickly write stability and like thereof here we have 

unstable, here stable, here stable, here unstable four parts and here stable and unstable and how 

did the equations look like here you have 
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑎𝑥2 and here you have 

𝑑𝑥

𝑑𝑡
= 𝑎 − 𝑥2. We 



made a small change in the equation and what you found was that the bifurcation behavior 

completely changed.  
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We can further appreciate this by looking at other equations. So, let us look at equation number 

(3). Now, the equation is 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑥2 

So,  

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑥2 = 𝑓(𝑥) 

I can determine the equilibrium solution by setting  

𝑓(𝑥) = 0 

which means 

𝑎𝑥 − 𝑥2 = 0 

So, from here I get 

𝑥𝑒 = 0 ; 𝑥𝑒 = 𝑎 

Let me draw these curves.  
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So, I have 𝑥𝑒 = 0 and 𝑥𝑒 = 𝑎, these are the two equilibrium solutions, let me draw the axis for 

the plane I have a.... I have xe........so, what would be the first curve that would correspond to 

𝑥𝑒 = 0 and this is what I was referring to that I have the curve which is the same as your axis. 

So, this is my first solution. So, this is 𝑥𝑒 = 0 and then the second solution second equation is 



𝑥𝑒 = 𝑎. Now, xe is your y-axis and a is your x-axis. So, this is basically the equation y = x, so, 

𝑥𝑒 = 𝑎 is the equation of the straight-line y = x. so, this is going to be your curve and this is 

𝑥𝑒 = 𝑎.  

Now, let me analyze different parts of these two lines and analyze whether the which part is 

stable and which part is unstable. So, my equation was  

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑥2 

 So, then what I will do is I will assign this as f(x) 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑥2 = 𝑓(𝑥) 

 from where I get 

𝑑𝑓

𝑑𝑥
= 𝑎 − 2𝑥 

and this has to be determined at x = 0 and x = a. So, therefore,  

𝑑𝑓

𝑑𝑥
|

𝑥𝑒=0
= 𝑎,          𝑎 < 0, 𝑠𝑡𝑎𝑏𝑙𝑒 &  𝑎 > 0, 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒   

Then I will determine  

𝑑𝑓

𝑑𝑥
|

𝑥𝑒=𝑎
= −𝑎,          𝑎 > 0, 𝑠𝑡𝑎𝑏𝑙𝑒 &  𝑎 < 0, 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒   

so, now, I can determine various parts of my bifurcation diagram and determine whether they 

are stable or unstable. So, let me see here I have  
𝑑𝑓

𝑑𝑥
|

𝑥𝑒=0
= 𝑎, which means this horizontal line 

and for a > 0, this is unstable. So, this means this is going to be unstable and for a < 0, this is 

going to be stable.  

So, about this point I determine the stability, what about the x = y line or xe = a line, for a > 0, 

I have stable which means this part the upper part is stable and a < 0 is unstable. So, this part 

is the unstable part and what I see is that as I change the value of a in this particular bifurcation 

diagram I go if I start from stability, I pass through a point beyond which my system becomes 

unstable or if I start with unstable point, I reach a particular point beyond which my system 

becomes stable. So, you go from stable to unstable, stable to unstable or unstable to stable, 



unstable to stable passing through one specific point and therefore, the bifurcation diagrams of 

this nature are called transcritical and the bifurcation is called transcritical bifurcation.  

So, the bifurcation diagram shown here is called transcritical bifurcation and what would you 

call that particular point where this point where these two curves meet where you go from you 

go from stable to unstable, unstable to stable and so on. You would call this point as critical 

point. And again, you would see that you changed the nonlinear equation a little bit and what 

happened was that you changed your pacification diagram altogether, the features the curves 

on the bifurcation diagram changed. Let us look into the final equation.  
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So, the equation now is 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑥3 

this is a cubic equation so, therefore, you may expect three equilibrium solutions. Let us see, 

so let us assign this as 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑥3 = 𝑓(𝑥) 

Then,  

𝑓(𝑥) = 0 

Means 

𝑎𝑥 − 𝑥3 = 0 

which means 

𝑥(𝑎 − 𝑥2) = 0 

So, now, if this is the case, then I get 

𝑥𝑒 = 0 , 𝑥𝑒 = +√𝑎 , 𝑥𝑒 = −√𝑎 



So, before I decided anything about the stability, let us first draw the various portions of the 

bifurcation plot itself.  
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So,  

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑥3 ;  𝑥𝑒 = 0 , 𝑥𝑒 = +√𝑎 , 𝑥

𝑒
= −√𝑎 

So, I will draw the curves, I will draw the draw the first a plane the plane is this I have a.... I 

have xe. So, my first solution xe = 0, my second solution is  𝑥𝑒 = +√𝑎 and my third solution is 

 𝑥𝑒 = −√𝑎.  

Now, time to identify, the stability and instability of various parts of this plane. So, if I assign 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑥3 = 𝑓(𝑥) 

then I can write 

𝑑𝑓

𝑑𝑥
= 𝑎 − 3𝑥2 

So, therefore,  

𝑑𝑓

𝑑𝑥
|

𝑥𝑒=0
= 𝑎,          𝑎 < 0, 𝑠𝑡𝑎𝑏𝑙𝑒 &  𝑎 > 0, 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒   

Now,  

𝑑𝑓

𝑑𝑥
|

𝑥𝑒=+√𝑎
= −2𝑎,   𝑎 > 0, 𝑠𝑡𝑎𝑏𝑙𝑒 &  𝑎 < 0, 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 

Finally, 

  
𝑑𝑓

𝑑𝑥
|

𝑥𝑒=−√𝑎
= −2𝑎, 𝑎 > 0, 𝑠𝑡𝑎𝑏𝑙𝑒 &  𝑎 < 0, 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 



So, time to mark the plane here. First the equilibrium solution xe = 0, for a > 0, I have unstable 

part. So, this is unstable. a < 0, I have stable so, this is stable. Now for the upper curve 
𝑑𝑓

𝑑𝑥
|
𝑥𝑒=+√𝑎

 

the curve exists only in the first quadrant there is nothing in the -a. So, therefore, the only curve 

which is present here is the stable one, this is stable. You can see from   
𝑑𝑓

𝑑𝑥
|

𝑥𝑒=−√𝑎
= −2𝑎, and 

a > 0 and this and same is the case, for the lower curve this is also stable and all these three 

points meet here.  

And to mathematicians when they looked at this diagram it reminded them of one specific tool 

which is used in farms and let us call a pitchfork these lines which are highlighted in red, they 

look like a pitchfork and therefore, this bifurcation is called pitchfork bifurcation. And this 

again has very different characteristics as we saw in this particular case, we service all the other 

cases.  
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So, therefore, when you compare equations (1), (2), (3) and (4), what you see is that they look 

similar, they are not same obviously and if they are not same, the dynamical behavior may not 

be expected to be the same obviously, but they are very similar and small changes in the 

parameters or the variables or their powers result in drastic changes in the bifurcation behavior 

of the system. 

So, we will stop here today, appreciating that bifurcations in nonlinear systems can show very, 

very different behaviors depending upon the functional form of the function which you have 

in the equation. And we have taken a lot of examples of different first order nonlinear systems. 

Now, I believe it is a good time to go to higher order systems. So, in the next lecture, we will 

start with higher order nonlinear dynamical systems. Thank you. 


