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(Refer Slide Time: 00:27) 

So, let us continue our discussion on Fixed Points and Bifurcations in Discrete Domain. And 

today, let us take the case of logistic equation. 
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So, now we will analyze logistic equation in discrete domain. So, our logistic equation was ⅆ𝑥ⅆ𝑡 = 𝑎𝑥 (1- x / N). And we would like to know the discrete time counterpart of this equation. 

So, let us try to get that. Let me write the derivative as 
𝑥𝑁+1−𝑥𝑁𝛥𝑡  = a xn (1 - xn / N) which can 

be written as xN+1 = xn + (a 𝛥t) xn (1 – xN / N). 

So, further simplify this as 𝑥𝑁+1 = 𝑥𝑁[1 +  𝑎𝛥𝑡(1 − 𝑥𝑁𝑁 )]. Now, let me do one thing let me 

simplify it a little further, 𝑥𝑁+1 = 𝑥𝑁[(1 + 𝑎𝛥𝑡) − 𝑎𝛥𝑡𝑁 𝑥𝑁],  I will take 1+ (a 𝛥t) out. So, I 

will get 𝑥𝑁+1 = (1 + 𝑎𝛥𝑡) [1 − 𝑎𝛥𝑡𝑁(1+𝑡) 𝑥𝑁]. 
And I can write this finally in form which is known to us as  

𝑥𝑁+1 = (1 + 𝑎𝛥𝑡) [1 − 𝑥𝑁𝑁(1+𝑡)/ 𝑎𝛥𝑡]. 
Now, why did I write this in this particular form, because if I denote 1 + 𝑎𝛥𝑡 by a new 

constant a’ and N (1 + 𝑎𝛥𝑡) /𝑎𝛥𝑡 by another new constant N’ then I can write my dynamical 

equation is 𝑥𝑁+1 = 𝑎′ [1 − 𝑥𝑁𝑁′]. 



And this form looks familiar to me because my dynamical equation in the continuous domain 

was 
ⅆ𝑥ⅆ𝑡 = 𝑎𝑥 (1- x / N) and in the discrete domain the form is very simple and very similar 

xN+1 = a’ xN (1 – xN / N’). So, now I can analyze equation 2. So, let me call this equation 1, 

equation 1 is in continuous domain, equation 2 is in discrete domain. 

And let me analyze this in discrete domain for a normalized population. So, let me say that I 

am considering a normalized population. And using the growth parameter as simply a, it is a 

matter of notation. So, my equation becomes xN+1 = a’ xN (1 – xN). So, I would like to analyze 

this equation. 

In fact, mathematicians call this parameter as finite growth parameter, it is called finite 

growth parameter to emphasize that this particular equation is in discrete time domain. So, let 

me analyze equation 3 which is simply xN+1 = a’ xN (1 – xN).  
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So, the equation is xN+1 = a’ xN (1 – xN). And the first thing that I would like to do is to 

determine the fixed points of this population. The corresponding equilibrium solution concept 

would exist for the continuous domain. And we know that for the continuous domain 

equation, there are two equilibrium solutions. So, if we model the system in discrete time 

domain, I should get two fixed points, let us see if that happens. 

So, I would denote f(x) as ax (1 – x) and the fixed points can be determined by setting f(x) = 

x. So, I get ax(1 – x) = x or x a (1 – x) - 1 = 0. So, therefore, my first fixed point x fixed point 

is 0 and a 1 minus x fixed point minus 1 is equal to 0 implies that 1 minus x fixed point is 

equal to 1 upon a from where I get x fixed point to be equal to a minus 1 upon a. So, this is 

my first fixed point. And this is my second fixed point. Will always get two fixed points, is 

there any condition under which I may not get two fixed points? We can quickly check this 

by solving this problem using graphical method. 
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So, following the graphical method I have f(x) = ax(1 – x) and g(x) = x. So, let me analyze 

this. We are considering populations, so, x would be a positive number. So, I would consider 

only the first quadrant. So, in such a case, what I see is that when a is a group parameter, so, 

it must be a positive quantity in fact, finite growth parameters, so, it must be a positive 

quantity. 



So, when a is equal to 1, you see that there is only one fixed point. So, for a is equal to 

exactly one there will be a fixed point there will be only one fixed point. When I make a 

greater than one what you will see is that there are in fact two fixed points. So, you can see 

here that you have this as one fixed point, x fixed point which is equal to 0 and then you have 

another fixed-point x fixed point and this happens when the value of a is not equal to 1. 

And now, anyway I previously wrote that x fixed point was 0 or x fixed point was a minus 1 

upon a which means the other fixed point the second point would depend upon the value of n. 

It is the case because as I keep on changing the value of a this fixed point can be seen to 

change, but this fixed point the lower one at x equals 0 remains the same. 

So, therefore, I will have two fixed points which means, the way I used to see equilibrium 

solutions, two equilibrium solutions for continuous logistic equation, I actually see two fixed 

points here for the discrete domain equation as well. 
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Now, the question is that if I have two fixed points, what are the natures of the fixed points. 

So, I have the equation as 𝑥𝑁+1  =  𝑎𝑥𝑁(1- 𝑥𝑁), f(x) = ax(1 – x), x fixed points first one is 0 

and x fixed point second one is a minus 1 / a. So, let us check the natures of the fixed points. 

So, I will write df /dx, I will determine df /dx and f is ax - a x
2
. So, df /dx would be a - 2ax, 

this is my df/dx. Now, I need to determine df/dx at the fixed points. So, df /dx at x fixed point 

is equal to 0 is a. So, what would be the nature of the fixed point? It would depend upon the 

parameter a. 

So, for a < 0, so, a < 1 it is very important that we do not, by mistake use 0 here for a less 

than 1 you would have attracting fixed point which means a stable solution tending to that 

fixed point and for a greater than 1 you will have repelling fixed point. Let us check if this is 

the case. 
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So, let us try to draw this dynamical system. So, my equation is xN+1 = a xN (1 - xN), this is 

my equation. I would set the value of a as some value and let me first start with 0.8 which is 

less than 1, 0.8 my variables are xN and as the time progresses I would discreetly move ahead. 

So, let me start with some initial seed for my series. So, I will have let us say that I use 0.1. 



So, 10 percent of the saturation population this is the meaning of initial population as 0.1 

because we are using normalized populations. So, what would happen here this would be a 

means this multiplied by xN (1 - xN)with a small change that I will make a constant. What was 

our working algorithm? For the next step xN+1 becomes xN. 

So, therefore, I would write this is equal to this and then I would propagate my system let me 

propagate my system like this. And now, I have various values of xN. Let me see how the 

system evolves. So, I will draw this and it is pretty clear from this plot that you in fact have a 

convergent system. So, the system is tending to this particular. 

So, you are coming down here like this. So, this x fixed point is equal to 0 for a is equal to 0.8 

which means a is equal to 0.8 which is less than 1 is an attracting fixed-point convergent 

population, converging to 0 in fact. Now, I will go to the second situation and what I will do 

is, I will set up this as 1.2. So, let me make this 1.2. What do I see? 

What now what I see is that the population is going away from this fixed-point, x fixed point 

is equal to 0, which means for a greater than 1, the fixed point 0 is a repelling fixed point. So, 

you are getting repelled from x fixed point is equal to 0. So, what our analysis we did sounds 

to be correct. Now, let us look into the second fixed point. 
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So, our second fixed point x fixed point was a minus 1 upon a and f(x) = ax - ax
2
 which 

means df / dx was a - 2ax which means that df/dx at x fixed point is equal to a – 1/ a would 

be what a - 2a( a - 1/ a). And what this would be equal to? This should be equal to 2 - a 

because these a’s go away and I have 2 - a. 

And my condition for stability now, for attracting or repelling fixed points were that this df / 

dx at fixed point should be greater than 1 for repelling and less than 1. So, greater than 1 is 

repelling and less than 1 attracting. So, for a in the range using this inequality you can see 

that for a in the range 1 < a < 3 you will have attracting fixed point, this inequality can be 

very easily established from here and from this condition. 

So, if I have the value of a between 1 and 3, my upper fixed point would be an attractive 

fixed point. Let us see if that is the case which we see in the graph. 
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You see in fact when I set the value of a as 1.2 which is greater than 1. So, in the range of 1 

and 3, the upper one would be the attracting fixed point. So, when a is 1.2. You see that the 

curve is saturating. That means, you can expect the fixed point to be some basis, you can 

expect this 0.16 to be the fixed point. And the system is asymptotically tending towards these 

fixed points that means this is attracting. 

Let me see if this is the case for other values of a in this range as well. So, I will change this 

to 1.5, you see your system is saturating again to this value, your system is saturating to this 

value. Let me do it further. So, I will make it 2. Again, you see saturation. So, as I go on 

increasing the value of a, my system now has upper fixed point which is in attracting fixed 

point. 

Now, the question is what happens at the condition when you go beyond 3. So, let us punch 

in some value which is more than three, let us say 3.05. What do I see? Well, I see an 

interesting behavior that there is an initial dynamics. So, there is an initial dynamics and once 

that initial dynamics is finished, you start seeing oscillations, start seeing oscillations and this 

happens at the value of parameter which is greater than 3. Let us see why does this happen. 
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So, we came up with a working algorithm to determine how we can determine the fact 

whether the particular fixed point is attracting or repelling. What you will do is you will do 

simply this, you will plot f(x) versus x and let us say that this is the curve. Then what you will 

do you will plot f(x) = x. 

Now, I have two fixed points, this is one fixed point this is another fixed point. I need to 

know the natures of the fixed point how would I do I would start with an x0. So, this is x0, I 

will go to the corresponding point on f(x) curve I will get the value of x1, I will go here on y 

= x line I will again from here keep on making triangles and what I see is that I am slowly 

reaching towards this point. 

So, this is an extracting fixed point and even if I start from here which is very close to the 

other fixed point what I see is if I follow the same method of drawing triangles, what I see is 

that I go like this, I ultimately reach this point. So, therefore, this is the repelling fixed point. 

This was our working algorithm. Let us see if this algorithm works for the logistic equation 

as well. 
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So, I will go to the logistic equation what I have is let me expand it and let me set the value of 

this to say 1.7, 1.7 is good enough. So, I have two fixed points here. So, my first fixed point 

is this, my second fixed point is this. Now, let me start with some x0. So, let me say that I 

will start with this x0 is equal to 0.275. When I do this, what I will do is I will go here on the 

curve on f of x, then I will move like this. 

And what we saw just now, in fact holds true here that this is an attractive fixed point and this 

therefore is repelling fixed point. Now, what happens if I change the value of the parameter 

a? Let me do one thing. Let me make the parameter a say 3, let me make it 3. So, this is what 

happens when I make it 3. So, I had previously started with 0.275 just one example. 

So, this is 0.275, x0. So, I will go up all the way here 0.275, then I will go here, then I will go 

here, I will go here and I will come here and then an interesting thing happens. What is the 

next step? I will come here. Once I reach here, I keep on repeating my values inside this box. 

So, I go here and then go here, here, here, but till I have not reached that value. There is an 

initial dynamics and this is precisely what you see here. 
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There is an initial dynamics and then you keep on repeating the exact same values and this 

phenomenon is called period doubling bifurcation, when you start seeing cycles in your 

system, so, these are cycles. Why these are cycles? When you keep on moving in a cycle the 

values repeat. And therefore, period doubling bifurcation happens in your system. Now, what 

if I increase the value of a further, let us see what happens. 

So, let me make this say 3.8. Well, do you see a convergent trend? The answer is no. Do you 

see a divergent trend? No. Do you a convergent trend? No. Do you see oscillations? No. The 

points you will see are all over the place perfectly randomly distributed. So, therefore, you 

say that xN+1 = 3.8xN (1 - xN) will give me the points which are uniformly distributed in the 

entire range, they go all the way from 0 to 1 in the range 0 to 1 and they are perfectly random, 

you cannot figure out any trend. 

They are not converging to a higher value, they are not converging to a lower value, they are 

not diverging, they are not oscillating with any specific cycle. So, therefore, you have 

perfectly random points. And what is interesting is that you will be interested in knowing the 

ultimate fate of the system and ultimate fate of the system would be given by the last point, 

this is given by the last point. 



So, let me see, let me change the initial value by a small number. So, I will change the initial 

value. So, my, say ultimate value for initial value 0.1 was this, 0.95 or something, and then so 

I was here. And then what I would do is I will make this as 0.11. And let us see where I am 

now, I am now here. I change the value by a very small number. I will do it further. 

Instead of 0.11, I will make it 0.09. I increase it and again you see that your value changed. 

Let me do it further. I will do it, I will make it 0.12. again, come here. And then if you try to 

find out the trend, which this entire set of points is trying to follow then you will see that 

there is no trend which is followed they are perfectly randomly distributed in this entire range 

of 0 to 1. 

And why does this happen? This happens because the equation is chaotic. So, the equation is 

set to display chaos. And what is the meaning of chaos? The meaning of chaos is that your 

fate of your system is highly dependent upon the initial condition. Well, that is always the 

case, that if you change the initial condition the dynamics will change, but to what extent, 

when you see a convergent trend then or whatever initial value of the variable that you take 

your system will converge to the same ultimate value as time t tends to infinity. 

For a divergent trend does not matter what initial value you take, your system will diverge to 

infinity. So, if you change the initial value, the fate of the system is not going to change, and 

therefore, the fate of the system is very predictable. But on the other hand, if you have a 

chaotic system, then even a small change in the initial condition of your system will result in 

a very, very large difference in the ultimate fate of your system. 

And this happens in case of the logistic equation, in case of discrete time logistic equation 

when you have the value of a close to 4. So, therefore, we saw that we can have a very simple 

equation discrete equation of the form xN+1 = axN (1 - xN), and depending upon the value of a 

you can get very, very different behavior. The first behavior was that you see a convergence 

to the lower fixed-point a < 1. 

You see convergence to the upper fixed point in the range is was from 1 to 3, 3 above, in fact 

at 3 that happens a period doubling bifurcation where you will see an initial dynamics and 

then you see cycles in your system. And why does this happen? We saw that in our plot the 

values of xN+1 and xN keep on repeating. And when you increase the value further close to 4, 

you see complete chaos in the system. 



So, these were some very interesting features which we observed in case of discrete 

dynamical system. We will continue our discussion on nonlinear dynamics and we will see 

some more interesting features of dynamical systems especially with reference to bifurcations 

in nonlinear systems in the next week. Till then, goodbye. 


