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Logistic Population Growth Model Continued... 
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So now let us continue our analysis of logistic population growth model. The model is in 

front of us. This is nothing but  

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 (1 −

𝑥

𝑁
) 

where we identified N as the carrying capacity. Physically, we saw that maximum number 

of members of any biological species which the ecosystem provided by, provided to it can 

sustain. 

So now, let us continue our analysis. We had converted this into normalized form as  

𝑑𝑦

𝑑𝑡
= 𝑎𝑦(1 − 𝑦) … … … (1) 

This was our normalized form. So instead of N, my y is expected to go between 0 and 1. 

This is the only difference, which would happen once you change x to y. 
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So, let us see. We had written a model equation as 

𝑑𝑦

𝑑𝑡
= 𝑎𝑦(1 − 𝑦) 

and we had written the solution as 

𝑦(𝑡) =
𝑦(0)𝑒𝑎𝑡

1 − 𝑦(0) + 𝑦(0)𝑒𝑎𝑡
… … … (2) 

And what we saw is that  

𝑦(0) = 0, 𝑦(𝑡) = 0 

which means that the population becomes independent of time, and  

𝑦(0) = 1, 𝑦(𝑡) = 1 

which again meant that the population became independent of time. 

Now, what is the physical meaning of this? This means that as time progresses, nothing is 

changing in your system. And when does this happen? This happens when you have, when 

you have reached equilibrium state. So let me try to determine the equilibrium solutions of 

the system. 

So, equilibrium solution of equation (1), What would be the equilibrium solution of 

equation (1)? I will determine it by setting  

𝑑𝑦

𝑑𝑡
= 𝑎𝑦(1 − 𝑦) = 0 

which means 

𝑦𝑒 = 0  &  𝑦𝑒 = 1 



This simply means that you have two equilibrium populations in your system. 

And what does physically the two equilibrium populations signify? They simply signify 

that if you have no population, which means 𝑦𝑒 = 0 , then you cannot expect the population 

to increase. So therefore, population will remain zero forever. Now, your carrying capacity 

for your system is one in these normalized coordinates. 

So therefore, when you have reached the population which is equal to the carrying capacity 

you will not expect the population to increase any further. So again, you have  𝑦𝑒 = 1. So, 

you have two equilibrium, two equilibrium solutions. And when you have two equilibrium 

solutions, you would like to know their stabilities. But before we comment about their 

stabilities, let us try to develop the phase portrait for the system. 
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So, we are developing phase portraits for  
𝑑𝑦

𝑑𝑡
= 𝑎𝑦(1 − 𝑦). I am considering the growth 

phenomenon. So therefore, I know that a  > 0. So, my phase portrait corresponds to a  > 0, 

my population y is always a positive quantity (y  > 0), and time physically is always greater 

than zero (t  > 0). So therefore, I am drawing the coordinates like this. 

Now, given that this is the plane in which I need to draw all the phase lines which are the 

solutions to  
𝑑𝑦

𝑑𝑡
= 𝑎𝑦(1 − 𝑦), what do I need to do? First thing which I always do is I mark 

the equilibrium solutions. So, I know that  𝑦𝑒 = 0 and  𝑦𝑒 = 1. So, I will mark them. So, 

this is  𝑦𝑒 = 0, and this is  𝑦𝑒 = 1. 

I have marked the two equilibrium solutions. Now, what did I do previously for this 

particular analysis? I divided my phase portrait into various regions. Let me do that here 

also. I have a Region 2; I have Region 1. In Region 1, the initial population see here the 

initial population  𝑦01 < 𝑦𝑒. In Region 1, the initial population or population at any instant 

of time for that matter, would be less than the equilibrium population. 



So, I will do the analysis for Region 1. In Region 1, I have to do the analysis for                   

dy

dt
= 𝑎𝑦(1 − 𝑦). 

So, a is positive (a > 0), I know. This y is between 0 and 1. So this is positive. And (1-y) 

for y between 0 and 1 would be positive. So therefore, overall  
dy

dt
 is going to be positive. 

Now since ye is my equilibrium solution, I know from my previous concepts that ye would 

act as the asymptote to the system. So how do I draw a line which starts from y01, has 

always a positive slope and has an asymptote as ye = 1? Let me draw one curve and let us 

see if you agree that this will be the case. This is going to be the phase line. And therefore, 

for different initial populations, you will have different phase lines. 

What is the physical meaning of this? The physical meaning of this is that if your initial 

population, if your initial population is less than the equilibrium population or less than the 

carrying capacity of your system, then what is going to happen? Then what is going to 

happen is that your population will rise till it reaches the value ye = 1, or in x-coordinates, 

ye = N. This is the meaning of this. 

Now, in Region 2, my initial population,  𝑦02 > 𝑦𝑒 . How would that happen? Well, this 

would happen if you introduce suddenly a very large number of members in the region 

which, with the number which is larger than the amount, with the number which can be 

sustained by the, by the ecosystem provided by the system. 

So, in that case how do I do this analysis?  
dy

dt
= 𝑎𝑦(1 − 𝑦). a is positive (a > 0), y > 1, so 

it is going to be positive. But (1-y) for y > 1 is negative. So therefore, the overall derivative 

would be negative in Region 2. That means, I have to start with y02, always maintain 

negative slope, and reach ye = 1 asymptotically. So not very difficult to see then this is 

going to be one phase line. 

And therefore, you can draw several of such phase lines. And what is the physical meaning 

of these phase lines in this region? It physically means that if you have, at an instant, 

population which is larger than the, than the equilibrium population of the system, then the 

population must go down, population must reduce. 



It must reduce till what extent? Till the carrying capacity. So now what you saw is 

something like this, that you had two equilibrium populations, and all the solutions, all the 

solutions they in fact merged or had a tendency to come asymptotically towards ye = 1. 

So therefore, I can write this, I can draw these arrows, which means ye = 1 is a stable 

equilibrium solution. And then I can extend this. I see that from here, in this region, 

everything is moving away from y = 0. So therefore, this one, the arrows would be pointing 

outward. And this one would be an unstable equilibrium solution. Physically, all of these 

things make, makes sense. 
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And now, again, for the sake of mathematical completeness, what I can do is, I can draw 

this complete phase portrait. So, this is t, this is y. I have two solutions, equilibrium 

solutions. This entire line is a solution. Let me emphasize that I am drawing this complete 

phase portrait for the sake of mathematical completeness so that you can appreciate that 

everything is in place, mathematically. 

There is no problem. Physically, you have to worry, in this particular problem, only about 

the first quadrant. So now ye = 0, ye = 1. So, Region 2, Region 1. We saw that in Region 1, 

the derivative has to be positive and then we drew this curve, for example. Now, as I go 

towards negative time, as I go to negative time, ye = 0 also has to be an asymptote. 

So, when I am here, and I have a positive slope, and this region is an asymptote which 

means it would be something like this, how do I join the curve? Well, I will do something 

like this. And therefore, again, draw various phase lines like this. And then in this region, 

I had drawn this, I will go up, this, this, and for negative populations, only mathematically, 

I can continue with the same analysis. 

You can do this analysis in Region 3. Same,  
dy

dt
= 𝑎𝑦(1 − 𝑦) , a positive (a > 0), y negative, 

so, you will find that the slope must be negative. And this would be the phase lines. And 



finally, what you saw is that here, all the solutions converge, here, all the solutions diverge. 

So, the lower state is the unstable state, the top state is the stable state. 
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Can we establish this stability using an analytical condition? So, you see here I have 

dy

dt
= 𝑎𝑦(1 − 𝑦) = 𝑓 

So, what is f? 

𝑓 = 𝑎𝑦 − 𝑎𝑦2 

To determine whether the equilibrium solution is a stable solution or an unstable solution, 

what I will do is, I will determine  
𝑑𝑓

𝑑𝑦
|

𝑦𝑒

 

 

So, 

𝑑𝑓

𝑑𝑦
|

𝑦𝑒

= 𝑎 − 2𝑎y|𝑦𝑒
 

So,  

𝑑𝑓

𝑑𝑦
|

𝑦𝑒=0

= 𝑎 > 0 

So, when  

𝑑𝑓

𝑑𝑦
|

𝑦𝑒

> 0, 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒  

Fine, let us take the other thing.  



𝑑𝑓

𝑑𝑦
|

𝑦𝑒=1

= −𝑎 < 0 

So, when 

𝑑𝑓

𝑑𝑦
|

𝑦𝑒

< 0, 𝑠𝑡𝑎𝑏𝑙𝑒 

These are the conditions for stability, analytical conditions. And this, in fact, is what we 

also saw in the phase portrait. See here. 𝑦𝑒 = 0, unstable and 𝑦𝑒 = 1, stable. Analytically 

as well as graphically, we get the same answer. 
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Now finally, when we wrote the expression 

𝑦(𝑡) =
𝑦(0)𝑒𝑎𝑡

1 − 𝑦(0) + 𝑦(0)𝑒𝑎𝑡
 

as the solution, and without solving or plotting the solutions, we got the phase portrait, we 

now need to see whether the phase portraits match. So let us go and see whether the four 

phase portraits in the two cases match. 
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So, now I can write here,  

𝑓(𝑥) =
𝑐 𝑒𝑎𝑥

1 − 𝑐 + 𝑐𝑒𝑎𝑥
 



c is my initial condition. So, let me get rid of this, and then let me tweak around. So, a is 

always positive. So let me write this in this small interval. And my initial population, is 

always positive. So again, between 0 and 2. 

We concluded previously, yesterday as well as today, that if your initial population itself 

is 1, it will remain 1. So, you see here, I have used c = 1, which means my initial population 

is 1. And then you see here, nothing changes. Now, I reduce my initial population and see 

the nature of the curve. It is exactly the same as we drew. So, can we quickly draw what 

we drew previously? 

We had drawn this. This is y, this is t. 𝑦𝑒 = 0, 𝑦𝑒 = 1 and you see asymptotically, this 

curve starts from y0, it starts from y0 and asymptotically reaches 1. Then we saw this 

portion, when your initial population is larger than the equilibrium population. When your 

initial population is larger than equilibrium population, what do you need to do? 

Well, you simply increase this here, and you see what do you get here. Now, my initial 

population was larger than the equilibrium population, in which case, I come down 

asymptotically to this limit. So, this phase portrait which I drew for physically realizable 

region, in fact, is absolutely correct. Now, what I will do is, I will try to see the effect of 

various parameters. 

So, let me animate the effect of initial condition. You see here. We also saw that if the 

initial condition is simply that you have c = 0, you see here, you are at zero. We saw this 

previously. We are at zero. If the initial population is zero, it will remain at zero forever. 

Then, if your initial population itself is 1, at c = 1, again, you see here that you would 

remain forever at 1. 

And then, between these two regions, between these two regions, if I animate, what I will 

get is that as long as my initial population is between 0 and 1, I will see a growth, and if 

my initial population is larger, then the equilibrium population, upper stable equilibrium 

population, I will see a decay. This is the decay. 

Then, let us confirm the rest of the parts of the phase portrait. So, this was Region 1, this 

was Region 2. So, this is Region 1, this is Region 2. So, Region 2 holds true. For negative 



time, here, this is also true, because what we drew was this. And then what we did was we 

extended it like this. Here you see, you start, go up, and then you go up in negative 

direction. 

Fine. Now, in Region 3, before we take Region 3, let us see Region 2. So, for looking at 

Region 2, let me make the c < 1. This is what we saw in Region 2. We had to draw like 

this. So, it came like this. But then I said that zero has to be an asymptote for negative time, 

and therefore this is what you are seeing here. Exactly the same behavior. 

Now Region 3, so what you do is you go for negative initial condition. You see here. As 

said that we would draw this, and this is exactly what you got. So let me quickly redraw 

all of the regions of the space portrait neatly. 
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So, I will have t, I will have y, I will have two equilibrium solutions. And the phase lines 

would look like this. The phase lines are in front of you. Try to convince yourselves of the 

physical meaning of each of this line. And then, you would realize that this is true only for 

a > 0. 

But what about a particular model and a particular case for which a < 0? Not very difficult 

to see. You would, you can simply make here a < 0. So let me make it a = -1. And when I 

do this, you see here all of them would get reversed. Now, I have this going up. And for 

this, you see, going down, going down and so on. 
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So therefore, what I can do is I can do this. I can draw another set of phase lines. This is t, 

this is y, this is one equilibrium solution, this is another equilibrium solution, and the 



gradients, because a has changed, will become exactly the opposite. So, now you have 

these as the phase lines. 

You would have these as the phase lines, and you would have these as the phase lines, 

exactly the opposite for a < 0. And final thing which I would do is, I know this is ye = 0, 

ye = 1, I know that this is stable, I know this is unstable, and you would see that, here,        

ye = 1. 

This will become unstable. And ye = 0, this will become stable. Why would this happen? 

Well, this will happen because, quite simply, if you determine  
𝑑𝑓

𝑑𝑦
|

𝑦𝑒

 with a < 0, then you 

will see that the situation has been exactly reversed. 

So, we will stop here today. And I hope you understood as well as appreciated the 

importance of non-linear models in developing the population dynamics. We started with 

a linear model, solved the problems associated with linear models, and then continued to 

develop a non-linear model, which is called the logistic model. We will discuss these 

things, this particular model further, with a variant of it in the lectures to come. Thank you. 


