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Welcome back to this course on Advanced Process Dynamics. As we enter the fifth week of 

instructions. Let us now switch gears and let us learn non-linear dynamics.  
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As I might have mentioned before, most processes around us are dynamical in nature and most 

systems are non-linear if that be the case, why study linear dynamics? So, the reason is quite 

simple that, in fact, there are two three reasons why we study linear dynamics and all the 

techniques that we have been studying right from the beginning of this course. The first thing 



being that, well, it is quite possible that the system is really linear in nature for which you need 

to know the techniques for handling such linear systems.  

But more importantly, when most processes are non-linear, it is possible that over a small range 

of parameters or time the processes may behave linearly. Or in other words, there may not be 

a large difference between the behavior of a non-linear system and a linear system. And in such 

a case, the study of linear systems would make a good case for the study of non-linear systems. 

Further, as we know that for linear systems as well as non-linear systems, which we are we can 

identify equilibrium states.  

Now, equilibrium is a term which is used for equilibrium solutions rather is a term which is 

used by mathematicians, for engineers more appropriate term is steady state. So, at steady state 

is the equilibrium solution exists and therefore, nothing changes with time. And if nothing 

changes with time, it is basically in material whether your system is linear or non-linear, but 

about this steady state, we can actually do a linear analysis of a non-linear system.  

In other words, we can convert a non-linear system two possibly a linear system and this would 

be more prominent around the steady state. So, this is what we are going to do, we are going 

to take up examples of non-linear systems and there would be two approaches of studying non-

linear systems. The first approach would be to linearized a non-linear system.  

And the second approach would be to in fact, use the techniques of non-linear dynamics or in 

other words, do the analysis in a non-linear domain itself and understand the characteristics of 

the system. So, before we do any of such things, let us first try to understand the basics of non-

linear systems and how do they differ from linear systems.  
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So, in our previous lectures, we defined in detail what a linear system is. So, for ensuring that 

a system is a linear system, what you need to do is you need to test the principle of linearity 

whether the principle of linearity holds true or not. So, what you would do is you would identify 

the operator corresponding to your model equation and if  𝐿̂ is an operator for your system.  



And your solution space contains two vectors u and v, they can be two solution functions, then 

the solution then the system is called linear if  

𝐿̂(𝑢 + 𝑣) =  𝐿̂(𝑢) + 𝐿̂(𝑣) 

𝐿̂(𝛼𝑢) = 𝛼 𝐿̂(𝑢) 

Where, 𝛼 is the element and the field over which your solution space is defined. And then we 

give this definition that those systems which do not follow this particular definition, are in fact, 

non-linear systems.  
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So, let us take an example of both of these systems we have been using this equation  

dx

𝑑𝑡
= 𝑎𝑥 

Now, for quite some time and we know that this is a linear first order autonomous equation, it 

is first order because there is only one equation one ODE first order ODE, its autonomous 

because the right-hand side has only x there is no ‘t’. But we really took it as granted that this 

is a linear system, let us formally verify whether the system is indeed linear or not.  
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So, my equation is  

dx

𝑑𝑡
= 𝑎𝑥 ………… (1) 

So, if x1 and x2 are the two solutions then, what I will do is I will identify the operator and 

operator in this case can be identified as  



𝐿̂ =
𝑑

𝑑𝑡
− 𝑎 

and if x1 and x2 are the two solutions, then  

𝐿 ̂𝑥1 =
d𝑥1

𝑑𝑡
− 𝑎𝑥1 ………. (2) 

and  

𝐿 ̂𝑥2 =
d𝑥2

𝑑𝑡
− 𝑎𝑥2 ………… (3) 

So here it should be x1, here it should be x2. And according to my first condition 

𝐿 ̂(𝑥1 + 𝑥2) =
𝑑

𝑑𝑡
(𝑥1 + 𝑥2) − 𝑎(𝑥1 + 𝑥2) 

I will expand it this would be  

𝐿 ̂(𝑥1 + 𝑥2) =
d𝑥1

𝑑𝑡
+

d𝑥2

𝑑𝑡
− 𝑎𝑥1 − 𝑎𝑥2 

and then I would do some rearrangements and put some brackets this would be 

𝐿 ̂(𝑥1 + 𝑥2) = (
d𝑥1

𝑑𝑡
− 𝑎𝑥1) + (

d𝑥2

𝑑𝑡
− 𝑎𝑥2) 

Now, from equation (2), I see that 
d𝑥1

𝑑𝑡
− 𝑎𝑥1 is nothing but 𝐿 ̂𝑥1 and from equation (3), I see 

that 
d𝑥2

𝑑𝑡
− 𝑎𝑥2 is 𝐿 ̂𝑥2. So, therefore, what I see is that the first condition of linearity holds true 

for this equation rather for this operator 𝐿̂ =
𝑑

𝑑𝑡
− 𝑎.  

Now, the second condition  

 

𝐿̂(𝛼𝑥1) =
𝑑

𝑑t
(𝛼𝑥1) − 𝑎(𝛼𝑥1) 

and let me do further simplification. Since alpha is a constant, this will be 



𝐿̂(𝛼𝑥1) = 𝛼
𝑑𝑥1

𝑑𝑡
− 𝛼(𝑎𝑥1) 

which means, this is  

𝐿̂(𝛼𝑥1) = 𝛼 (
d𝑥1

𝑑𝑡
− 𝑎𝑥1) 

and again, from equation (2) 

𝐿̂(𝛼𝑥1) = 𝛼𝐿 ̂𝑥1 

So, the second condition of linearity is also satisfied by the operator and therefore, equation 

(1), 
dx

𝑑𝑡
= 𝑎𝑥  is a linear equation. And the system whose dynamics is given by equation (1), 

dx

𝑑𝑡
= 𝑎𝑥 is, in fact, a linear system.  
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Now, I will make a small change in equation (1), and let us write equation (1) now as  

dx

𝑑𝑡
= 𝑎𝑥2  …………. (1) 

This is my equation, I can write this as  

dx

𝑑𝑡
− 𝑎𝑥2 = 0   

And now I need to identify an operator identifying an operator for the first term is easy at 

simply 

𝐿̂ =
𝑑

𝑑𝑡
(. ) − 𝑎(. )2 

What you basically do is you take the solution, you square it and multiply it with a, so there is 

no standard notation for it and therefore, we would have to resort to a notation what we will 

write here as this.  



So, in an analogous manner, let me write for the first operator derivative operator as well. So, 

this is my 𝐿̂. So, therefore,  

𝐿 ̂𝑥1 =
d𝑥1

𝑑𝑡
− 𝑎𝑥1

2 ……….. (2) 

And similarly, 

𝐿 ̂𝑥2 =
d𝑥2

𝑑𝑡
− 𝑎𝑥2

2 ………… (3) 

So, let me write this as equation (2) and equation (3).  

So, therefore, I can write  

𝐿 ̂(𝑥1 + 𝑥2) =
𝑑

𝑑𝑡
(𝑥1 + 𝑥2) − 𝑎(𝑥1 + 𝑥2)

2 

So, this will become equal to  

𝐿 ̂(𝑥1 + 𝑥2) =
d𝑥1

𝑑𝑡
+

d𝑥2

𝑑𝑡
− 𝑎𝑥1

2 − 𝑎𝑥2
2 − 2𝑥1𝑥2 

and from here, I can write this as  

𝐿 ̂(𝑥1 + 𝑥2) = (
d𝑥1

𝑑𝑡
− 𝑎𝑥1

2) + (
d𝑥2

𝑑𝑡
− 𝑎𝑥2

2) − 2𝑥1𝑥2 

from where I can write  

𝐿 ̂(𝑥1 + 𝑥2) = 𝐿 ̂𝑥1 + 𝐿 ̂𝑥2 − 2𝑥1𝑥2 

and I have this additional term minus 2ax1x2.  

So, therefore, I can see here that 

𝐹𝑜𝑟 𝑎 ≠ 0      𝐿 ̂(𝑥1 + 𝑥2) ≠ 𝐿 ̂𝑥1 + 𝐿 ̂𝑥2  …………. (4) 

and when x and when a is in fact equal to zero, then you simply have the equation 
dx

𝑑𝑡
= 0  and 

that can be very easily proved to be a linear operator.  



But, as long as a is a non-zero quantity, you do not satisfy the first condition for linearity. So, 

this is equation four. The first condition for linearity is not satisfied. We do not need to go 

further, because the first condition is not satisfied, but we can still look into the second 

condition. 

𝐿̂(𝛼𝑥1) =
𝑑

𝑑t
(𝛼𝑥1) − 𝑎(𝛼𝑥1)

2 

Which means this is equal to 

𝐿̂(𝛼𝑥1) = 𝛼
𝑑𝑥1

𝑑𝑡
− 𝑎𝛼2𝑥1

2 

which can be written as  

𝐿̂(𝛼𝑥1) = 𝛼 (
d𝑥1

𝑑𝑡
− (𝑎𝑥1

2)𝛼) 

and you can see that  

𝐿̂(𝛼𝑥1) ≠ 𝛼𝐿 ̂𝑥1 ………… (5) 

So, you can see here that neither the first condition nor the second condition for linearity is 

satisfied and therefore, a system described by the equation 
dx

𝑑𝑡
= 𝑎𝑥2  is a system which follows 

non-linear dynamics.  
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So, can we have some physical examples, perhaps examples from the previous lectures that we 

studied. So, we had previously studied the dynamics of the liquid level in a tank our model 

equation was  

𝑑ℎ

𝑑𝑡
=

1

𝐴
(𝑞1 − 𝑞2) 



We took several examples and one of the specific examples was that when the input flow rate 

𝑞1 = 0 and output for it q2 is such that you have a valve and 𝑞2 = 𝐴ℎ, then your system 

becomes linear first order autonomous system.  

Then imagine that you have a gravity driven flow, gravity driven flow with no inlet rather than 

using inlet let us say no inflow there is no inflow. So, therefore, 𝑞1 = 0  and I have a gravity 

driven flow. So, for gravity driven flow I have the expression for  

𝑞2 = 𝐴𝑃𝐶𝑑√2𝑔ℎ 

So, therefore, I can write this as  

𝑑ℎ

𝑑𝑡
= −(

𝐴𝑃𝐶𝑑√2𝑔

𝐴
)√ℎ 

and if I denote this entire quantity as some quantity 𝛼 in fact, we will use 𝛼 later in our notation. 

So, instead of 𝛼, let me use the term simply ‘a’.  

𝐴𝑃𝐶𝑑√2𝑔

𝐴
= 𝑎 

If this is equal to a, then I have  

𝑑ℎ

𝑑𝑡
+ 𝑎√ℎ = 0 ………. (1) 

Now, this is my model equation for a gravity driven flow. So, now let us see if equation one is 

a linear equation or a non-linear equation. The system is linear or not on linear, so, I have the 

equation  

𝑑ℎ

𝑑𝑡
+ 𝑎√ℎ = 0 
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So, I will identify the operator as  



𝐿̂ =
𝑑

𝑑𝑡
(. ) + 𝑎√(. ) 

This will become my operator the process of taking the square root and multiplying it with a. 

So, if h1 and h2 are the two liquid levels, then 

𝐿̂ℎ1 =
𝑑ℎ1

𝑑𝑡
+ 𝑎√ℎ1 ………. (2) 

 

𝐿̂ℎ2 =
𝑑ℎ2

𝑑𝑡
+ 𝑎√ℎ2 ……….. (3) 

from where I can write 

𝐿̂(ℎ1 + ℎ2) =
𝑑

𝑑𝑡
(ℎ1 + ℎ2) + 𝑎√ℎ1 + ℎ2 

I can simplify this and this would be  

𝐿̂(ℎ1 + ℎ2) =
𝑑ℎ1

𝑑𝑡
+

𝑑ℎ2

𝑑𝑡
+ 𝑎√ℎ1 + ℎ2 

and I know that  

𝐿̂(ℎ1 + ℎ2)  ≠ 𝐿̂ℎ1 + 𝐿̂ℎ2 

So, therefore, my condition for linearity is not satisfied. Can I take the case of second property?  

𝐿̂(𝛼ℎ1) =
𝑑

𝑑𝑡
(𝛼ℎ1) + 𝑎√𝛼ℎ1 

𝐿̂(𝛼ℎ1) = 𝛼
𝑑ℎ1

𝑑𝑡
+ √𝛼(𝑎√ℎ1) 

𝐿̂(𝛼ℎ1) ≠  𝛼𝐿̂ℎ1 

So, we took the case of liquid level problem and what we saw was that under various conditions 

the same system can act in different manners in all the previous cases whenever we took this 

example, the system was linear, today when we have a system where there is no inlet and the 

outlet is now gravity driven flow then we saw that the system becomes non linear.  
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Let us take one more example the example of cooling of a body, we took this example 

previously and we saw that you can rearrange this equation by considering all of these 

quantities in the bracket as constants this is what we did previously. So, when  

ℎ𝐴𝑠

𝜌𝑉𝑐
= 𝑎 

then what happened?  

We saw this previously that we have the equation which would be  

 

𝑑𝑇

𝑑𝑡
= −𝑎(𝑇 − 𝑇∞) 

and when you add  𝑇∞  in fact also was a constant and when all of these conditions are satisfied, 

then you could write  

𝑑𝑇∗

𝑑𝑡
= −𝑎𝑇∗ 

Where, 

𝑇∗ =  𝑇 − 𝑇∞ 

And this equation in the box which you got was a linear first order autonomous equation, but 

when we did this analysis and in fact, we did this analysis pretty thoroughly to determine the 

time evolution of temperature and we determined all the face portraits in all of those conditions, 

the results were true when this condition of constant values of this entire multiplication and 

division giving rise to a holds true and constant  𝑇∞ holds true.  

But when we see these properties, heat transfer coefficient, surface area, density, volume, 

specific heat, how sure we can be that we in fact have a system which in which the properties 

are perfectly constant, we cannot be sure, if you do this experiment over a very large range of 

temperature, then certain certainly the density of the body is susceptible to change that can 

happen changes in the volume of the body et cetera.  



In fact, this is true for all of these properties, which are shown here. And therefore, the moment 

you introduce any of these properties with a function of temperature, when you introduce 

temperature in any of these, your system will become highly non-linear. And therefore, all of 

the analysis which we did previously was true only under certain assumptions.  

And as I mentioned before that you can have the linear dynamics as an approximation of non-

linear dynamics only under certain conditions or under specific ranges in this particular case, 

when the temperature range of operation is small, then you can assume that the properties are 

independent of temperature of properties do not vary considerably with temperature. So, the 

since all the properties are constant, our linear analysis holds true otherwise, it is not.  
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If that is the case, then how do I analyze a non-linear dynamical system? Well, to analyze a 

linear dynamical system, we always used to write these dynamical equations and the output 

equations. 

The vector, 

[
 
 
 
 
 
𝑥1

𝑥2

𝑥3

.

.
𝑥𝑁]

 
 
 
 
 

 is the dynamical vector, the vector 

[
 
 
 
 
 
𝑦1

𝑦2

𝑦3

.

.
𝑦𝑃]

 
 
 
 
 

 is the output vector and the vector 

[
 
 
 
 
 
𝑢1

𝑢2

𝑢3

.

.
𝑢𝑀]

 
 
 
 
 

 is the input vector.  

 



 

So, this was the typical representation of an Nth order linear system. 
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Now, what would happen if I do not have linearity in my system? Then what would happen is 

and in fact, you have all of these dimensions for these equations in front of you, which we have 

come across before. 

 

 

Please make sure that you still remember the dimensions and how do they come from where 

do they come from.  

But if I have a non-linear dynamical system, then what is going to happen is that instead of the 

right-hand side being very beautiful matrices multiplied by vectors, now, you will have to write 

individual equations. So, for example, you may have  

d𝑥1

𝑑𝑡
= 𝑎𝑥1      



and  

d𝑥2

𝑑𝑡
= 𝑏𝑥2 

as a dynamical system in this particular case autonomous so, you did write this as  

d

𝑑𝑡
[
𝑥1

𝑥2
] = [

𝑎   0
0   b

] [
𝑥1

𝑥2
] 

we did this previously. 

But if this is not the case and you have in fact a non-linear system. Let us take an example  

 

d𝑥1

𝑑𝑡
= 𝑥1( 𝑥1 + 𝑥2)     

and  

d𝑥2

𝑑𝑡
= 𝑥2( 𝑥1 + 𝑥2)     

If this is the case, then but you cannot in a straightforward manner write this system of 

equations as a matrix equation and we saw several advantages of converting a system of 

equations to matrix equations and then by then we could do an Eigenvalue analysis and 

comment upon the stability of the system and so, so on and so forth.  

So, if that is not the case that means, you have a non-linear system then in general you would 

have a set of equations which would be your dynamical equations and the dynamical equations 

would be functions of the individual dynamical variables and also the individual forcing 

functions. So, the functions here go from f1 f2 up to fN.  

d𝑥1

𝑑𝑡
= 𝑓1( 𝑥1, 𝑥2, ……𝑥𝑁 , 𝑢1, 𝑢2, ……𝑢𝑚)     

d𝑥2

𝑑𝑡
= 𝑓2( 𝑥1, 𝑥2, ……𝑥𝑁 , 𝑢1, 𝑢2, ……𝑢𝑚)     

. 



. 

d𝑥𝑁

𝑑𝑡
= 𝑓𝑁( 𝑥1, 𝑥2, ……𝑥𝑁 , 𝑢1, 𝑢2, ……𝑢𝑚)     

Similarly, the output equations go from y1 individual locations from y1 to yP and now, the right-

hand side some other function and the right-hand side goes from g1 g2 up to gP and all of them 

again are individual functions of the dynamical variables and input functions.  

𝑦1 = 𝑔1( 𝑥1, 𝑥2, ……𝑥𝑁 , 𝑢1, 𝑢2, ……𝑢𝑚)     

𝑦2 = 𝑔2( 𝑥1, 𝑥2, ……𝑥𝑁 , 𝑢1, 𝑢2, ……𝑢𝑚)     

. 

. 

𝑦𝑃 = 𝑔𝑃( 𝑥1, 𝑥2, ……𝑥𝑁 , 𝑢1, 𝑢2, ……𝑢𝑚)     

But, suppose if I have this, if I have these equations. Can I do anything with these equations to 

convert them to matrix equations?  

And that is basically the meaning of linearization, linearization. So, what I will do, what I will 

do is, for example, when I have  

d𝑥1

𝑑𝑡
= 𝑥1( 𝑥1 + 𝑥2)     

and  

d𝑥2

𝑑𝑡
= 𝑥2( 𝑥1 + 𝑥2)     

I will determine the steady state solution in the language of mathematicians, I will determine 

the equilibrium solutions, as an engineer I know that it is not very appropriate to call steady 

state as equilibrium, but we will follow the general convention.  

So, I will determine the equilibrium solutions by setting up this as zero.  

d𝑥1

𝑑𝑡
= 𝑥1( 𝑥1 + 𝑥2) = 0 ;    

d𝑥2

𝑑𝑡
= 𝑥2( 𝑥1 + 𝑥2) = 0      



And if those equilibrium solutions are x1s and x2s then at x1s and x2s, my system dynamics 

ceases to occur which means I have zero gradients nothing changes with time and therefore, it 

does not matter whether I have a linear system or a non-linear system and therefore, about that 

point x1s, x2s I can do an analysis which matches my analysis with the analysis of linear systems.  

That is the meaning of linearization. I am converting my non-linear system of equations or non-

linear system to a linear system about the steady state or equilibrium solution. So, let us see 

how would they look like.  
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So, if the steady state solution of the non-linear system is described with this vector, a few 

moments back I wrote the steady state solution the procedure to drive the steady state solution 

for a 2x2 system. So, if this entire vector is the steady state solution, which is basically obtained 

by determining the equilibrium solution.  

Then what I can do is I can write that at any location x1, x2,… xn, u1, u2,… um in proximity of 

the steady state solution as  

𝑓𝑖( 𝑥1, 𝑥2, ……𝑥𝑛, 𝑢1, 𝑢2, ……𝑢𝑚) = 𝑓𝑖( 𝑥1𝑠, 𝑥2𝑠, ……𝑥𝑛𝑠, 𝑢1𝑠, 𝑢2𝑠, ……𝑢𝑚𝑠) +

                                                                    
𝜕𝑓𝑖

𝜕𝑥1
|
𝑠𝑠

(𝑥1 − 𝑥1𝑠) +
𝜕𝑓𝑖

𝜕𝑥2
|
𝑠𝑠

(𝑥2 − 𝑥2𝑠) +

                                                                    ……
𝜕𝑓𝑖

𝜕𝑢1
|
𝑠𝑠

(𝑢1 − 𝑢1𝑠) +
𝜕𝑓𝑖

𝜕𝑢2
|
𝑠𝑠

(𝑢2 − 𝑢2𝑠) + ⋯ 

Similarly, I can do this analysis for the function ‘g’ as well and what basically am I doing this 

is nothing but Taylor series expansion, in fact multivariable Taylor series expansion.  

𝑔𝑗( 𝑥1, 𝑥2, ……𝑥𝑛, 𝑢1, 𝑢2, ……𝑢𝑚) = 𝑔𝑗( 𝑥1𝑠, 𝑥2𝑠, ……𝑥𝑛𝑠, 𝑢1𝑠, 𝑢2𝑠, ……𝑢𝑚𝑠) +

                                                                    
𝜕𝑔𝑗

𝜕𝑥1
|
𝑠𝑠

(𝑥1 − 𝑥1𝑠) +
𝜕𝑔𝑗

𝜕𝑥2
|
𝑠𝑠

(𝑥2 − 𝑥2𝑠) +

                                                                    ……
𝜕𝑔𝑗

𝜕𝑢1
|
𝑠𝑠

(𝑢1 − 𝑢1𝑠) +
𝜕𝑔𝑗

𝜕𝑢2
|
𝑠𝑠

(𝑢2 − 𝑢2𝑠) + ⋯ 



So, currently I have how many variables for f I have n+m number of variables and for ‘g’ also 

I have n+m number of variables.  

So, if I have these many variables then for first, for just one variable I know that I can drag that 

illustrates much of it easily in higher dimensions instead of just derivative I will have to take 

partial derivative and in fact all the partial derivatives and then what I have done is I have 

truncated the series and I have just gotten rid of the second and higher order derivatives. So, 

this is basically the Taylor series expansion. 
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And when I do this, when I do this, I can write now my equation as a matrix equation. So, now, 

I define the deviation vector  

[x1*  x2* …. xN*] = [(x1 – x1s)  (x2 – x2s) ……. (xN – xNs)]
T 

and similarly, deviation vector for u,  

[u1*  u2* …. uM*] = [(u1 – u1s)  (u2 – u2s) ……. (uN – uMs)]
T 

deviation vector for y  

[y1*  y2* …. YP*] = [(y1 – y1s)  (y2 – y2s) ……. (yN – yPs)]
T 

and when you look at this equation when you look at this equation take it at this side then you 

will find that you can rearrange this entire equation to equations in the form of matrices matrix 

equation further.  

So, what would happen in the deviation variable form in the deviation variable form you will 

you can now write  

 



And this is basically the same equation exact same equation as what you wrote previously,  

 

 

This is for linear system.  

And what you have here is not for non-linear system this is for linearized system remember, 

this is for linearized the system which means this will hold true in the proximity of your steady 

state, you cannot guarantee that this would be the most generic behavior of the non-linear 

system over the entire possible state.  

So, this is what we learned today that when you have a system, which is non-linear, there is 

one particular way to handle such system by linearizing this. So, lean non-linear set of 

equations in general would not be elegant enough to be put in matrix form, but what you can 

do is you can determine the steady state and about the steady state you can do a Taylor series 

expansion and then you will realize that you get the exact same form of equations which is 

 

which will be the linearized form except that you need to realize that here x*, u* and y* are in 

the deviation variable form. So, we will stop here today and continue our discussion on non-

linear systems in the next lecture. Thank you. 


