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Welcome back, we are studying Advanced Process Dynamics. And till the last week, we 

studied first and higher order systems, which were linear, we studied both autonomous as 

well as non-autonomous systems. So, before we move ahead, let us have a final look into 

some features of higher order autonomous systems. 

(Refer Slide Time: 00:45) 

We previously focused on higher order systems by taking specific examples of second order 

systems. Second order systems are planar, which means that the first portraits can be drawn 

on an XY-2-dimensional plane. While they make a good case for understanding the general 

characteristics of higher order systems, we can actually look into higher order systems 

explicitly and comment more upon the general procedures which may be adopted for the 

analysis of higher order systems. So, in this lecture, for example, we will take some examples 

of third order system and we will see how third order systems can be analyzed, which are 

autonomous. 

(Refer Slide Time: 01:38) 

So, our general autonomous system was given by a matrix equation. So, our dynamical vector 

was an N x 1 vector and it was applied with the time derivative. And that was equal to a 

matrix which was N x N. And matrix was operated on the dynamical vector again, which was 

N x 1. So, the N
th

 order dynamical equation was given by                   where x is a vector and 

A is a matrix. And to compare it against the analogous first order dynamical equation, we had 

the first order dynamical autonomous equation as 
ⅆ𝑥ⅆ𝑡 = 𝑎𝑥. 

(Refer Slide Time: 02:48) 

We saw that for such a system, the general solution is given by this expression  

 

What is important to see is that λi's the eigenvalues and vi are the corresponding eigenvectors. 

So, this was the general solution of such an autonomous system. So, let us take some specific 

examples to see how we can analyze such systems. 

(Refer Slide Time: 03:37) 

So, the first example that I have in front of me is given by this equation  



ⅆⅆ𝑡 [𝑥1𝑥2𝑥3] = [𝑎 0 00 𝑏 00 0 𝑐] [𝑥1𝑥2𝑥3] 

So, the three components of my dynamical vector are x1, x2, x3. And this = a diagonal matrix 

where the diagonal elements are a, b and c multiplied again by the vector x1, x2, x3. It is not 

very difficult to see that the eigenvalues are simply a, b and c. Since it is a diagonal matrix, 

the elements on the diagonal would be the eigenvalues. 

And again, since it is a diagonal matrix the corresponding eigenvectors would be simply [1 0 

0], [0 1 0] and [0 0 1]. So, given that I have this equation, this matrix equation along with the 

eigenvalues and eigenvectors which have been given here. I can write the general solution as  

[𝑥1𝑥2𝑥3]= C1 e
a t

 [100] +C2 e
bt

  [010]+ C3 e
a t

 [001] 

In the previous analysis of planar systems, we said that when a, b and c are real in that case 

you had only a and b, in this case you had a, b and c and when a, b, c all three of them are 

real, then you have three cases. Case one, you have saddle solutions. Case two, when you 

have source solutions. And case three, when you have sink solutions. 

So, for a planar system, when you have only a and b, you will get saddle solution when say a 

> 0, and b < 0, one of the eigenvalues is positive, the other eigenvalue is negative. You would 

get a source solution when a > 0, and b is also greater than 0, and you will get a sink solution 

when both a and b are less than 0, both of them are negative. Now, since we have a third 

dimension, we need to see what is the effect of c. 

So, we now need to see that if I put c here, what is going to be the effect. So, before we look 

into the effect of a, b and c, one thing which is quite apparent from looking at the solution 

given by equation one here is that v1 = [1 0 0]
T
 is a solution, we know that this is going to be 

a solution. How do I know this? 

Well, I will simply make c2 = 0, I will make c3 = 0, I will make c1 = 1 and at initial condition 

t = 0, this is 1. So, therefore, [x1, x2, x3] would be [1 0 0]. And I can say that [1 0 0] is a 

solution. And similarly, I can write v2 = [0 1 0]
T
 is a solution. And finally, v3 which = [0 0 1]

T
  

is also a solution. So, when I make a phase portrait, I will consider these three facts. So, let us 

try to draw the phase portrait. 



(Refer Slide Time: 08:12) 

Since I have x1, x2, x3 in my case, so, the phase portrait now would be 3-dimensional. So, let 

me draw the axis and the three axes would be x1, x2, x3. I saw that [1 0 0] is a solution. So, I 

can do one thing, I can make this as, draw this as a solution. This goes and this is a 3-

dimensional plot. So, the line is going in the plane which you can see here. 

So, this is one solution, this is another solution, which is [0 1 0]. And then you have a third 

solution, which is [0 0 1]. These are the three solutions we know for sure exist. Now, I do not 

know whether these solutions are stable or unstable. But I know for sure that this point [0 0 0] 

transpose is an equilibrium solution. How would you know that? Simply equate this equation 

to with 0 and you will get x1 = 0, x2 = 0 and x3 = 0. 

Therefore, x1, x2, x3 are, in fact, x1, x2, x3 is vector which is the equilibrium solution. So, now 

what I want to know is the direction of arrows of time as t tends to infinity on this phase 

portrait. So, now, if a < 0, b < 0, and also c < 0, all these three components are negative, all 

these three eigenvalues are negative. So, what is going to happen I will have e
at

 c1 v1 and 

what would happen to this when a is negative, this will tend to 0. 

Similarly, plus c2 e
bt

 v2 and this would tend to 0 when b is negative plus c3 e
ct
 v3 and this 

would tend to 0 when c is negative. So, therefore, on all these three solutions, which are 

along [1 0 0], [0 1 0] and [0 0 1], I can draw the arrows like this. Now, I have c1, c2 and c3 

which are constant multipliers. 

And therefore, these constant multipliers when they assume nonzero values would take me 

away from these straight-line solutions, which means then that now I will move away from 

the straight-line solutions and I would be somewhere in this 3-dimensional space. So, I need 

to know how would the curves look like, and for that, I do one thing I developed an analogy 

with my 2-dimensional system. 

(Refer Slide Time: 12:00) 

So, for my 2-dimensional system, when a < 0, and b < 0, I want to develop the phase portrait, 

I know that the phase portrait is a sink solution. So, what I do is that I draw these two axes. 

And now, I want to draw the phase lines, these two lines are indeed the solutions and I know 

the directions for them, these are the directions. And I want to know the curves, which are 

away from these two lines. 



So, what is going to happen, I will have to do an analysis of the solution when a < 0, b < 0 

and equation is of the form 
ⅆ𝑥ⅆ𝑡 = [𝑎00] 𝑏𝑥; then I know that x1 =  c2 e

at
 and x2 = c2 e

bt
. This will 

be the solution, so I know from here that  ⅆ𝑥2ⅆ𝑥1 = 𝐶2𝑏𝐶1𝑎 ⅇ(𝑏−𝑎)𝑡 

I want to know the gradients of the lines which are on this plane. So, what do I understand 

from this as t tends to infinity, and if a > b, the case when the eigenvalue a >eigenvalue b, 

then what is going to happen 
ⅆ𝑥2ⅆ𝑥1 will tend to 0 because this term will become negative and as 

t tends to infinity your gradient would tend to 0. So, I now need to draw the curves such that 

the gradient or the derivative tends to 0 as time t tends to infinity. 

And on this curve, which point shows t tends to infinity, it is this equilibrium point. So, 

therefore, in close proximity of this point the gradient should be 0, and therefore, I can draw 

these phase lines. For the other case, you would see that the curves would be angled 90 ֯ , 

rotated by 90 ֯. 

And I can then draw several other curves and this is the general phase portrait which we solve 

for 2-dimensions. Now, for 3-dimensions, I can do this extension by observing that the 

dominant eigenvalue decides the direction which would act as the tangent. So, the dominant 

eigenvalue in the first case was a and direction corresponding to a was this line x1. So, 

therefore, tangent for the curves would be along x1. So, I can do the same analysis. 

(Refer Slide Time: 15:48) 

Now, for my 3-dimensional case, I have x2, this is x1, this is x3, this entire line is a solution, 

this entire line is a solution, this entire line is a solution and the solutions tend to [0 0 0] as 

time t tends to infinity. And now, whichever curve I draw, which are away from this axis 

should be such that they should be tangential to the dominant eigenvalue. 

So, if a >b >c, all of them being negative, if this is the case, then I should have the curves 

which are tangential to this axis, my x1 axis and the direction of the arrows would be like this 

and then I can draw several of them. And whichever curve I draw, I should draw in such a 

manner that they should come tangentially to the x1 axis. 



So, this is a sink solution and what would happen to a source solution, well, exactly opposite 

of this particular case. To understand the nature of saddle solution, let us take another 

example. 

(Refer Slide Time: 17:20) 

So, now, the example that we have in front of us is given here, where the three values which 

you have for the eigenvalues are λ1 = 2, λ2 = 1 and λ3 = -1. If imagine that I had only the later 

two x2 and x3, which means that I had the system which was confined only to this much then 

what would have happened? I would have written the planar solution as simply this [x2 x3]
T
 = 

c1 e
t
, which means simply e

t
 times [0 0]

T
, well [0 0] cannot be an eigenvector. So, this is not 

an ideal example. 

So, let us take the 3-dimensional case, because for this particular example, we have [0 0] here 

and [0 0] can never be an eigenvector. But in case, instead of [0 0] imagine that you had some 

other quantity, for the sake of understanding we change it to say [1 0]
T
 + c2 e

-t 
[1 2]

T
, then 

what would the phase portrait look like, the phase portrait would look like this, this would be 

x2, this would be x3. 

So, I now, along x2 direction have [1 0], so, this is [1 0]. So, this means this entire line is a 

solution and then I have [1 2], which means 1 and 2. So, this entire line is a solution. And 

now, I need to decide upon the stability. Here, you have plus 1, so, this means this axis is 

unstable, so I would draw curves like this, this is minus 1, so, I will draw curves like this and 

beyond these two, if I draw a curve like this, then you will have to draw the arrow direction 

of arrow like this, in this the direction of arrow would be this. 

There would be a curve like this where the direction of arrow would be this, and here, you 

would again have a curve where the direction of arrow would be this. So, this is a 2-

dimensional phase portrait and this is the equilibrium solution, not very difficult to see how 

we get a saddle solution. 

(Refer Slide Time: 20:17) 

But now, when you introduce a third dimension, what is going to happen, I can write my [𝑥1𝑥2𝑥3] 

as c2 e
2t

 [321] + c2 e
t
 [100] + c3 e

-t[012]. And now, I need to develop the 3-dimensional phase 



portrait. So, let me first simply draw the axes this is x1, this is x2, this is x3. The eigenvalue 

along the x1 direction is positive + 2, along x2 this is positive + 1, and along x3, this is 

negative -1. 

So, one thing which I know for sure is that x3 is a stable solution axis. So, where is x3? I have 

[0 1 2], [0 1 2]. So, if this point is [0 1 2], then this entire curve which passes through two 

points [0 0 0] and [0 1 2] is a solution and it is going to be a stable solution, because the 

eigenvalue here is negative. So, I can quite easily draw the direction of axes like this. Now, I 

have two solutions given by the direction of first eigenvector and the direction of second 

eigenvector, and along both of these the eigenvalues are positive. 

So, in the first case, when I consider only the third eigenvector [0 1 2] with eigenvalue minus 

1, there was no effect of first two eigenvalues, the eigenvalue +2 did not have any effect, the 

eigenvalue plus 1 also did not have any effect. So, I got an entire curve which was stable. 

Directed towards the equilibrium solution [0 0 0]. So, directed inwards. 

Now, if I identify a set of points, where I do not have the influence of the third eigenvalue at 

all, which means that I have influence of only the eigenvalue which is equal to 2 and only the 

influence of eigenvalue which is equal to 1 then for that particular subspace I will have only 

unstability, I will not have any stable solution at all. Now, for two points, I can identify a 

unique straight line, for three points in 3-dimensions, I can identify a unique plane. 

So, therefore, I can identify a unique plane passing through the vector v1 the first eigenvector 

and the second vector v2 the second eigenvector and the equilibrium solution [0 0 0] which is 

always there. So, passing through these three points, I would identify a unique plane. So, let 

us imagine that the plane looks something like this, this is the plane. So, I have a plane which 

passes through v1, v2 and [0 0 0]. 

So, what is possible now to be done is that I can say that any point on this plane will have the 

effect only of λ1 and λ2, and there will not be any effect of λ3 which is negative, which means 

that this entire plane is the unstable plane, every solution which would lie here would be an 

unstable solution. So, if now I can find my system only to this particular plane, then I can 

draw curves, which all of which would pass through [0 0 0] the way I did previously, and 

what would be the direction of time these are unstable, so you would move away from it. 

So, this is the case of a saddle solution, where you can identify a subspace corresponding to 

stable solutions and a subspace corresponding to unstable solutions. If you confine yourself 



only to the stable subspace, your system will always be stable, if you confine yourself 

exclusively to the unstable subspace your solutions would be unstable and anything beyond 

this would have a saddle characteristics, which means, along one particular direction, you 

would have stability or along some other direction you would have unstability. 

(Refer Slide Time: 26:26) 

Now, final example that we take is given here were the eigenvalues now are i and -i which 

means they are imaginary, purely imaginary and the third eigenvalue is negative. So, I can 

quickly write the solutions as  

[𝑥1𝑥2𝑥3]= C1 e
i t

 [−𝑖00 ] +C2 e
-it

  [𝑖10]+ C3 e
- t

 [001] 

Now, I need to analyze the system. Have you done this analysis before? Yes, we did. 

What was the procedure that we adopted for a planar system? I would convert e
it
 to cos t + i 

sin t. I would convert e
-it

 to cos t - i sin t. I would take it in, multiply and change this entire 

exponential with negative with imaginary index to a real part plus i times the imaginary part 

and what you would get is that the real part is a solution and the imaginary part is also a 

solution, and therefore, you can write this as d1 times the real part where d1 is arbitrary 

multiplier plus d2 times the imaginary part. 

(Refer Slide Time: 28:34) 

So, when you do this what you would get is what I have already jotted down, you should get  

[𝑥1𝑥2𝑥3]= d1 [𝑐𝑜𝑠 𝑡𝑠𝑖𝑛 𝑡0 ] + d2  [𝑠𝑖𝑛 𝑡𝑐𝑜𝑠 𝑡0 ]+ d3 e
- t[001] 

It is a little tricky to analyze the first two terms and by the way d1, d2, d3 are arbitrary 

multipliers the way we used to have c1, c2, c3. So, if I want to draw this in 3-dimensions, one 

thing which I can definitely do is this that the third axis along x3 is the one which is 

accompanied by negative eigenvalue and this is simply [0 0 1]. 

So, the axis itself and the eigenvalue is negative, so, therefore, I would have the arrows like 

this, this is the stable solution. The problem is how to analyze the first two axes, well, you 

will realize that these are the parametric equations of a circle, individually if you take this if 

you take this, they are the parametric equations of circle which means that if I had only a 2-



dimensional system then what would have happened. For a 2-dimensional system, I know 

that if you have purely imaginary system that then I have a center solution. 

In this case also, and you see around the third dimension you have 0 and 0, which means you 

have planar solutions which have been probably shifted away from the plane. So, how can I 

draw a center solution such that I have these equations of the circle but still have a tendency 

to come towards [0 0 0]. So, for that imagine that I have a point which satisfies the solution 

then this point should keep on encircling this axis but at the same time it also has a tendency 

to come towards this. 

So, solution would be to draw a cylinder, so you would have a solution which would be on 

the cylinder and the system has a tendency to come towards [0 0 0]. So, therefore, I would 

spiral around here and then the moment I will keep spiraling here in circles, similarly if I am 

here I would spiral around and the moment I reach here I will keep on going in circles. 

So, if you are away from the x1 x2 plane where the value of x3 is non-zero, you have a 

tendency to come towards [0 0], so you will keep spiraling till you reach the x1 x2 plane and 

the moment you reach [x1 x2]plane you simply have the 2-dimensional effect and you will 

have the center solution. So, this is what we saw the 3-dimesional system, so general features 

which can be extracted for the phrase portraits of a system which is of third order. We will 

continue this discussion for higher order systems and take up an example from a system 

which is of the order four. Thank you. 


