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So, we continue our discussion on non-autonomous systems, we will today take up similarity 

solution for solution of non-autonomous higher order dynamics. Before we go into the details, 

let us quickly look into the equations that we were dealing with our dynamical equation of 

general Nth order non-autonomous system was given by this vector, this matrix equation  

 

where x is the dynamical vector and u is the input vector.  

And then we saw that the system in fact can be multiple input multiple output type and 

therefore, the general the most generic form of the equations were given as this were  

 

This was the dynamical equation and the corresponding equation for the output variables was 

given as this 

 

So, this all together will completely describe my system. Now, to solve a system which is of 

this form, what we need to do is resort to similarity transformation.  
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So, before we go into the details of similarity transformations, let us look into some basics. So, 

first of all we need to define what similar matrices are. So, the definition is here, similar 

matrices are the matrices which follow these conditions. So, if P is a non-singular matrix, if P 

is a non-singular matrix such that you invert the matrix P and that is why the condition of non-

singularity must be there, if you can invert the P and get  

P-1A P = B 

If this is possible, then the matrices A and B are called similar matrices.  

Let me repeat quickly that if you have a matrix A and you identify a non-singular matrix P and 

do an operation P-1A P = B, then the matrices A and B are called similar matrices. Now, what 

is this operation P-1A P called. The operation of P-1A P = B is called similarity transformation 

you have every matrix can be looked upon as a transformation it can be looked upon as an 

operator which operates on a vector to give you another vector. So, when I do this operation  

P-1A P, I have the operator A, I also have another operator B because both of them matrices. 

So, the procedure of obtaining a new operator B by P-1A P = B is called similarity 

transformation.  

When you do this similarity transformation, you get certain characteristics which are interesting 

and important. The first feature is that similar matrices have same eigen values, this is important 

similar matrices have same eigen values. So, matrix A and matrix B would have seen eigen 

values and how are the eigen vectors related, if x is an eigen vector of A,  

So, if I know the eigen values of A, I know the eigen values of B too because I know that 

similar matrices have same eigen values, but if I know the eigen vectors of A, what can I say 

about eigen vector of B. So, if x is an eigen vector of A with an eigen value λ, then P-1x would 

be the eigen vector of B with same eigen value.  
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So, let us see how does this work? So, I have with me  

P-1A P = B    …………(1) 

This is a condition for similarity. Now, what I do is I do an operation where I post multiply 

both sides by P-1. So, what is going to happen  

B P-1 = P-1A (P P-1) 

Find a post multiplied P-1 on both sides now, I know  

 

P-1 P = I 

An identity matrix multiplied by any other compatible matrix will give the matrix back. So, 

therefore, I can write 

B P-1 = P-1A 

Now, B is a matrix. P-1 is a matrix. A also is a matrix and since their multiplication is 

compatible, they all together will make an operator individually. So, let me operate this on the 

same vector which means, I can write here 

 (B P-1) x = (P-1A) x 

Where, x is any vector. I can do some rearrangements in the bracket I can write this as  

B (P-1 x) = P-1(A x) ………. (2) 

So, now if x is an eigen vector of A with an eigen value λ. 

So, when x is an eigen vector with an eigen value λ, then I can write  

A x = λ x 

That is the definition of eigen value and eigen vector. So, therefore, I can write B so, I can write 

equation (2) as  

B (P-1 x) = P-1(λ x) 



and λ is simply a scalar which means, I can write  

B (P-1 x) = λ (P-1x) 

also on the right-hand side, but what do I see here? What I see here is that I have P-1x on both 

sides and P-1 is a matrix x is a vector. So, let me imagine that this is equal to a vector which 

can be written as y.  

P-1x = y 

So, I can write  

B y = λ y  

and this is nothing but the fact that λ is an eigen value of B with the corresponding eigen vector 

as y, and this is what we wanted to prove that λ is an eigen value of B, λ is an eigen value of 

A, so, A and B had same eigen values and they satisfy P-1A P = B and when x was the eigen 

vector of A, then P-1x became the eigen vector of B with that proved both of them.  
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Now, if this is the case, if this is the case then how what can we how can we make use of this 

So, what we can do is that we can make a matrix P which comes from the augmentation of 

eigen vectors of A. What is the meaning of augmentation? So, if vector v1 is given by  

ν1 = [
𝑎
𝑏
] 

and vector v2 is given by 

ν2 = [
𝑐
𝑑
] 

 

then a vector matrix A which is formed by augmentation of v1 and v2 would be the matrix 

which goes like this  

A = [ v1 | v2 ] = [
𝑎 𝑏
𝑐 𝑑

] 



You use the vectors as the columns of the matrix and if that is the case, then for our particular 

example, what we have done we have made P by augmentation of the eigen vectors of A which 

means that you will do  

P = [ v1 | v2 | ……… vN] 

for NxN matrix, NxN system.  
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So, when you have P remember our usual definition of a condition for similarity was quite 

simply this that P-1A P = B, this was quite simply the condition for similarity and if this is the 

case then the eigen values of B and eigen values of A would be same. Now, you have a specific 

matrix P which is made by augmentation of the eigen vectors. So, vi are the eigen vectors of A 

and in such a case when you do this operation, you make the matrix P, you determine its inverse 

and you do the operation P-1A P = B, but what would that matrix B be, it would be a diagonal 

matrix it could be a matrix with a specific feature.  

So, since it is a diagonal matrix, we denote it by  

Λ = B = 

[
 
 
 
 
 

𝜆1   0   0   0……0
0   𝜆2    0   0……0
0   0   𝜆3    0……0

.

.
0   0   0   0…… . 𝜆𝑁 ]

 
 
 
 
 

 

So, let me repeat the condition for similarity would hold true as long as you can identify any 

matrix P and do this operation P-1A P = B and since you need P-1, the matrix should be non-

singular and if you obtain a matrix B, then the eigen values of B and eigen values of A would 

be same, but if you make P from the augmentation of the eigen vectors of A then B would be 

a diagonal matrix and the eigen values would appear along the diagonals and since diagonal all 

have the eigen values and rest other elements are zero, we can quite simply see that the eigen 

values of B which is the which is nothing but matrix Λ would be same as the eigen values of 

A.  
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Now, what we do is we make use mean we observe affect, the observation is that if NxN matrix 

is diagonalizable if it has N linearly independent eigen vectors. So, now, the question would 

be that can I always do this that I take a matrix A and by diagonalization, I mean obtaining a 

matrix such that the eigen values appear on the diagonals and all the off-diagonal elements are 

zero, is it always possible? So, the answer is that it is always possible as long as the eigen 

vectors are linearly independent. So, we come across this term linearly independent eigen 

vectors, let us see what is the meaning of linearly independent eigen vectors using one example.  

So, in the previous one of the previous lectures, we took this example of a dynamical system 

given like this  

𝑑𝑥1

𝑑𝑡
= −2𝑥1 − 4𝑥2 + 2𝑥3 

𝑑𝑥2

𝑑𝑡
= −2𝑥1 + 𝑥2 + 2𝑥3 

𝑑𝑥3

𝑑𝑡
= 4𝑥1 + 2𝑥2 + 5𝑥3 

Now this particular example is as an autonomous system. But, we are trying to understand the 

meaning of linear independence.  

So, this example serves well, so, I can convert this system of equations to a matrix equation 

like this  

𝑑

𝑑𝑡
[

𝑥1

𝑥2

𝑥3

] = [
−2  − 4   2
−2      1     2
4      2       5

] [

𝑥1

𝑥2

𝑥3

] 

I wrote the eigen values and eigen vectors as this  

𝜆1 = 3 ; ν1 = [2  3  1]T 

𝜆2 = −5; ν2 = [2  -1  1]T 

𝜆3 = 6; ν3 = [1  6  16]T 



So, for this particular example, we got these 3 eigen vector. We want to know whether these 3 

eigen vectors are linearly independent or not. So, if the 3 eigen vectors are linearly independent 

then the only solution to 

av1 + b v2 + c v3 = 0 

should be  

a = b = c = o 

This is the condition for linear independence.  

So, let me write this condition for linear independence, this is the condition for linear 

independence which means I take a multiplication constant 

av1 + b v2 + c v3 = 0 

Then the only solution should be a = b = c = 0. Now, let us see if that is the case in the present 

case.  

 

(Refer Slide Time: 22:05)  

 

So, let me write down the equation as 

𝑎 [
2

−3
1

] + 𝑏 [
2

−1
1

] + 𝑐 [
1
6
16

] = [
0
0
0
] 

I need to solve for a, b, c when I need to solve for a, b, c I can do this by first converting this 

into a matrix equation which is of this form  

[
2     2     1
−3 − 1   6
1     1     16

] [
𝑎
𝑏
𝑐
] = [

0
0
0
] 

Now, let me refer to this matrix as B and I will do elementary row operations on B so as to 

obtain an upper triangular matrix so, I will start with this  

[
2     2     1
−3 − 1   6
1     1     16

] 



The first operation that I will do is, let me keep the first row as it is. So, I will make  

𝑅2 → 2𝑅2 + 3𝑅1 

𝑅3 → 2𝑅3 − 𝑅1 

so, this becomes  

[
2   2   1
0   4   15
0   0   31

] 

So, in fact, I have converted my matrix to a triangular matrix and then I can convert this back 

into set of equations as this  

2a + 2b + c = 0 ……. (1) 

4b + 15c = 0 …….. (2) 

31c = 0 …….. (3) 

which means  

c = 0 

when I substitute it in equation (2), then I get  

b = 0 

and when I substitute c = 0 and b = 0 and equation (1), I get  

a = 0 

which means  

a = b = c = 0 

a is equal to b is equal to c is equal to 0. This means that I have a system in which there are 3 

linearly independent eigen vectors.  
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Now, finally, in case where you do not have linearly independent eigen vectors, what would 

you do in that case, you do not get a diagonal matrix. So, a diagonal matrix was of this form 

Λ = 

[
 
 
 
 
 

𝜆1   0   0   0……0
0   𝜆2    0   0……0
0   0   𝜆3    0……0

.

.
0   0   0   0…… . 𝜆𝑁 ]

 
 
 
 
 

 

 

This is whatever happened when you had all the independent linearly independent eigen 

vectors. So, imagine that you do not have linearly independent eigen vectors in which case 

what you need to do you will need to determine the generalized eigen vectors.  

I have encouraged you to determine to look for the procedure in case you have not yet come 

across it or you have forgotten the procedure to determine generalized eigen vectors when you 

determine generalized eigen vectors and you do this operation that if NxN matrix does not have 

N linearly independent eigen vectors, then there exists a non-singular matrix such that now,    

P-1A P will not be a diagonal matrix, it would be a Jordan matrix, it would be a Jordan matrix.  
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So, for the final concept for today, what we will do is we will look if NxN is in our cases 3x3 

then if you have 3 eigen vectors which are linearly independent, 3 eigen vectors, then what 

would happen, your system is diagonalization. So, your Jordan matrix would simply become 

 

J = [

𝜆1   0   0
0   𝜆2   0   
0   0   𝜆3

] 

and it has 3 Jordan blocks. We will see very quickly why the it has 3 Jordan blocks. When there 

are 2 eigen vectors which are linearly independent. So,  



J = [

𝜆1    0   0
0   𝜆2    1   
0    0   𝜆2

] ; J = [

𝜆1   1   0
0   𝜆1   0   
0   0   𝜆2

] 

when you have 1 eigen vector only, then your Jordan block would be simply  

J = [

𝜆1   1   0
 0   𝜆1   1   
0   0   𝜆1

] 

So, the super diagonal elements would become zero. So, then what is the meaning of Jordan 

block you would have the diagonal elements and then you have a super diagonal where 

elements would be 1.  

So, there is there is 1 Jordan block, here you have 2 Jordan blocks, 1 Jordan block is this one, 

this one another Jordan block is this one in this one Jordan block is this one, the other one or 

the Jordan block is this one. And in the first case you have first Jordan block, you have second 

Jordan block and you have third Jordan block. So, the final form of your matrix would be a 

little different. So, we will build upon these concepts and take up an example for solution of 

nonlinear autonomous systems in the next lecture, followed by physical examples. Thank you. 


