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(Refer Slide Time: 00:35) 

So, let us continue our discussion on spring mass system, which is second order linear 

system. So, we took the case of free undamped system in the previous lecture, and today we 

would be interested in free vibration with damping. We took the example of the cases where 

we do see damping in the system and the purposes or the motivation behind damping.  

(Refer Slide Time: 00:55) 

So, what we are trying to understand is we are trying to analyse the system in state space 

domain by converting the second order equation into two first order equations and then 

subsequently analyse the dynamics. We did develop the phase portrait of the system for 



undamped system, let us see what can be done for the damped system and how does it differ 

from the undamped system.  

(Refer Slide Time: 01:27) 

So, we have the equation for our damped system as  

𝑚 ⅆ2𝑥ⅆ𝑡2 + 𝐶 ⅆ𝑥ⅆ𝑡 +  𝑘𝑥 = 0 

and we converted it to a set of two equations and subsequently to a matrix equation and we 

got the matrix equation as  ⅆⅆ𝑡 [𝑥𝑦] =  [ 0 1−𝑘/𝑚 −𝑐/𝑚] [𝑥𝑦] 

So, now this matrix is different from the matrix which we get for the free system or the 

undamped, or the undamped system.  

So, the since the matrix is different the corresponding eigen values and eigen vectors would 

be different. So, for this particular case, I have already determined the eigen vectors and 

eigen values for you. So, I have λ1 which is equal to 
−√𝐶2−4𝑘𝑚−𝐶2𝑚 ; the corresponding eigen 

value is [
√𝐶2−4𝑘𝑚−𝐶2𝑘  1]

T
. 

And the second eigenvalue is 
√𝐶2−4𝑘𝑚−𝐶2𝑚 ; eigen vector was [

−√𝐶2−4𝑘𝑚−𝐶2𝑘  1]
T
.. So, clearly 

these eigen values are different from what we got in the previous case, but, you see the only 

difference between this case and the previous case is that in the previous case you do not 

have C.  

So, what you can as well do is you can simply substitute C is equal to 0 in this case and what 

you would realize is that you get the same eigenvalues and eigenvectors which you got in the 

previous lecture. So, it looks like everything is consistent. So, in that case my solution x y 

would take the form  

[𝑥𝑦] = C1 ⅇ−√𝐶2−4𝑘𝑚−𝐶2𝑚 𝑡
 [√𝐶2−4𝑘𝑚−𝐶2𝑘1 ] +C2  ⅇ√𝐶2−4𝑘𝑚−𝐶2𝑚 𝑡

 [−√𝐶2−4𝑘𝑚−𝐶2𝑘1 ] 

So, this is going to be the solution and from here what we can do is we can determine x 

explicitly, but before we do that, we see an interesting thing here right so, let us see any one 



of the eigen vectors, λ1 = 
−√𝐶2−4𝑘𝑚−𝐶2𝑚 , now we at this point of time do not know anything 

about C or k or m the magnitudes.  

So, we do not know whether C
2 

-
 
4km would be greater than 0 or less than 0 or the under root 

of it would be a real quantity or an imaginary quantity. So, let us take both the cases. So, case 

1 you have λ1 and λ2 which are real λ1 and λ2 both of them are real.  

So, what is going to happen is your solution would assume the form xy is equal to C1 e to the 

power some real number. Let us say that real number is at times the eigen vector. So, let me 

simply write it as the eigen vector to avoid wastage of any time here, v1 + Ce
bt

 v2.  

So, this is going to be the functional form of the solution exact values of a C1 etc we need to 

be determined. Now, since I have considered this as a real quantity what appears inside the 

eigen vector the same quantity appears inside the eigen vector so, that also is going to be a 

real quantity. So, therefore, the elements of v1 and v2 are going to be real, because √𝐶2 − 4𝑘𝑚 is the real number. So, would be minus of that number.  

(Refer Slide Time: 08:57) 

So, if that be the case, I can simply write the final form of x(t) as C1e
at

 + C2e
bt

. So, my 

dynamical equation, my dynamical system will follow this equation and what is the nature of 

this system. So, let us plot it. 

(Refer Slide Time: 09:34) 

So, I have f (x) = C1e
ax

 + C2e
bx

. I have two exponential functions here. And as we saw in case 

of first order dynamics, if you have an exponential function with a > 0, your system is going 

to blow up. Now, instead of one exponential function, you have two exponential functions.  

So, if both of them are going to be greater than 1, greater than 0, which is currently the case, a 

is equal to 1, b is equal to 1, then the system is going to blow up to infinity, looks consistent. 

Can we make both of them negative? When you make both of them negative, the system 

converges to 0. So, you have a stable system.  

So, for the case where both of the, both a and b are positive, the system tends to infinity. For 

the case where a and b are both negative, the system tends to 0. Now, I have one interesting 

case where one of them is negative and the other one is positive. What is going to happen? 

So, let me make one of them positive. And the system goes to infinity. Can I modulate this? 



Or can I have any way so that the system does not diverge to infinity, but I can do one thing, I 

can adjust the weightages here.  

And does not matter what I do, does not matter what I do, I always see here, see I am 

changing the weightages. Here, I am changing the weightages here. And in all cases, what I 

see is that the system diverges to infinity. And for certain cases, so I will keep a as less than 1 

and b as greater than 1. And I will make b very small, but still greater than 1, what I see is 

that the system now has a minima, it starts going down and then it goes up. So, what do I 

learn from all of these observations?  

(Refer Slide Time: 12:26) 

Well, I have the equation of the form x(t), which is equal to C1e
at

 + C2e
bt

.So, when a > 0, and 

b > 0, what is going to happen? You are going to see the system go to infinity. X(t), when a < 

0 and b < 0, what you are going to get is x(t), the system will converge to 0.  

And the third case when say a > 0, and b < 0, then depending upon the weightages you may 

have an initial minima in your system or you may not have but ultimately as time t tends to 

infinity, you will always see that the system goes to infinity. Then let us ask ourselves 

whether we saw this in the phase portraits which we developed. Well, a > 0, b > 0, which 

means the eigen values are both positive, we saw that the system has source solution.  

Which means, if I start at one value, the value of the variable is always going to increase, 

always. In sink solution, what I saw was that, the value always tends to come to [00]. although 

this is x and y, if you trace just x, so x is increasing here, x is decreasing here and this is the 

arrow of time, arrow gives direction of time. So, these two are consistent. What about the 

third one, third case is interesting. We saw so, this is the source solution, this is the sink 

solution.  

And this is we know that for a > 0, b > 0; it should be a saddle solution. But, if I go with the 

conventional saddle, which we drew in the previous lecture, which should look like this then 

what you would find is that the value of x is monotonically decreasing, it is never increasing.  

So, again this non-monotonic behaviour, which you can see here on the top is not something 

which you see here at the bottom. So, looks like the phase portrait and the dynamical 

behaviour do not match, but that is not correct. That is not correct, because, now, you have 

the eigen vectors which are not oriented to (1, 0) and (0, 1). See for this case, which we 



considered in the previous lecture the eigen vectors were oriented along (1, 0) and (0, 1) this 

is no more the case. 

So, in the current case what is going to happen is that you will have the eigen vectors or the 

straight-line solutions, which would look something like this. So, let me first get rid of this 

one and have eigen vectors for example, would look like this.  

(Refer Slide Time: 16:35) 

So, you have xy xy and if the eigen vector is this and this so, this is one eigen vector, this is 

another eigenvector. So, how will I draw a phase portrait or a phase line if this is the eigen 

vector. Well, I can draw something like this, the phase lines would be like this. So, now if I 

start from here the value of x will decrease it will go through minima and then it will start 

increasing again you can see you the value of x comes down come goes through minima and 

goes again.  

So, again you have the saddle solution which saddle phase portrait which is in 

correspondence with the xt diagram which you developed here. And in case of spring mass 

system, what you have is that your values of m, k and c would be such that you would 

confirm to the central behaviour, sink behaviour.  

Physically your values would be such that you start with a perturbation in your system and 

you come down and settle to your equilibrium value, this happens as the third case which is 

the sink case and if that is the case you call it as over damped system, the example of door 

closer or the clutch pedal of car which I gave are actually the cases where you have 

overdamped system. The system follows this behaviour or this phase portrait but then you 

may as well have a third case.  

(Refer Slide Time: 18:50) 

So, let us look into this, you have a case where, so the first case was that x(t), was equal to 

C1e
at

 + C2e
bt

 and we looked into different values of a and b their magnitudes and you found 

solutions. Now, the other case is when the eigen values are complex. So, our eigen value in 

this case was λ is equal to what I got was 
−√𝐶2−4𝑘𝑚−𝐶2𝑚 . 

So, the first case we said that there would be two values and these if you solve for λ1 and λ2, 

say you get a and b. Now, in second case, you get two complex values and let us see those 

complex values are a ± ib the two values that you get a plus or minus ib. So, now your 



solution would be [𝑥𝑦] = C1 e
(a + ib)t

 times the eigen vector, the eigen vector itself would be of 

the form [(C +  id)1 ]  1 + C2 e
(a – ib)t

, [(C −  id)1 ]  in case you have confusion of why I am 

writing C + id and C - id, the eigen vector which we wrote was like this [
−√𝐶2−4𝑘𝑚−𝐶2𝑘  1]

T
.  

So, you can see that you in fact will have if √𝐶2 − 4𝑘𝑚 is imaginary, then your eigen vectors 

will also have the elements which are complex numbers. And therefore, if you have the 

equation of this form, then you can write x as what C1 e
at
e

ibt
 (C + id) + C2e

at
e

-ibt
(C – id).  

And then what would be your next step, your next step would be converting e
ibt

 to cos bt +i 

sin bt and you would convert e
-ibt

 to cos bt - i sin bt. Then you will do again the 

rearrangements convert the expression to the form real plus i times imaginary and the real 

numbers, the real part and the imaginary part themselves would be the functions of would be 

the solution of your equation.  

So, therefore I leave this, these steps as an exercise for you and write that what is going to 

happen is that e
at

 will come out here and this exercise would actually be identical to what you 

got previously because you are going to convert into the power ibt to cosines and sines, its 

exactly the same method.  

(Refer Slide Time: 23:19) 

So, what you would get is this, x(t) = e
at
 C1 cos bt + C2 sin bt. Again, I am just writing the 

functional form because the absolute values are not important here. What you will rearrange 

your entire equation is what you will do is, you will rearrange your entire equation into a 

form which is similar to this expression. And now, we will analyse the dynamics of the 

system.  

So, how does the dynamics differ from the previous one? So, this is for the damped one, 

equation 2 and previous case was x(t) was simply C1 cos bt + C2 sin bt, this was undamped 

and we know that undamped looks like this, so this is how undamped look like I am trying to 

draw them. It did not happen, but I am trying to draw them with the same magnitude, same 

amplitude, so the amplitude would be the same. 

(Refer Slide Time: 25:19) 

So, let us see if we can draw this, so my function is f(x) = C1 sin bx + C2 cos bx. And my 

second function g(x) is what? The same thing but this time multiplied by e
ax

. Let us see the 



red curve looks very interesting is the damped one. So, to make the case properly, let us first 

make the value negative and let us keep the well amplitudes in a small range from minus 0.1 

to 0.1.  

So, that the systems do not become very, very blown up. So, what you see here is that the 

undamped system, sustained oscillation does not change the magnitude, but here does not 

change the amplitude. But for the for the red function, what do you see is that the amplitude 

goes on reducing. This means that it has a damping effect, but it has a damping effect. When 

does it have a damping effect? When a is negative is very important here.  

(Refer Slide Time: 27:12) 

So, let us go back and draw this. So, we have x and t, sustained oscillations of same 

magnitude and now I have a less than 0, what is going to happen? In this case, I am going to 

reduce my amplitudes subsequently, such that further, as time t tends to infinity the amplitude 

will become 0. Now, you can expect exactly the opposite case here, when a is greater than 0, 

since a appears in the x in the power of the exponential, what is going to happen, the 

amplitudes will increase with time and so on, and the system would blow up.  

(Refer Slide Time: 28:14) 

Let us see if we indeed see this. So, what I am doing now is I am making a positive and you 

will see here the amplitudes keep on increasing with time. So, let me quickly animate this for 

a less than 0 the amplitudes die out for a greater than 0 the amplitudes keep on increasing and 

amplitude established to infinity. So, this is an interesting behaviour and for the over damped 

system for an under damped system.  

So, overdamped system was the previous one, this is called under damped system, where you 

have damping, but the damping is not complete, you do have damping the system is getting 

damp, but the system is called under damped for over damping, the system will 

asymptotically reach to the 0 value in a continuous manner, depending upon e
at

 + C1 e
at

 + C2 

e
bt

 depending on a and b, the system may have some number of extrema but in general, the 

system will assume exponentially die down.  

So, you call that as over damping. This particular case is the case of under damping and when 

we say damping, you are assuming that a is less than 0. So, this is the case which you can see 

here. You have damping, but the same equation with to a greater than 0 can in fact show a 

divergent behaviour. And this behaviour in fact, is what you also see in various examples, 

two very famous examples are there, one example is the example of aerodynamic fluttering.  



So, you have you have an aircraft, where the wings are pretty large and when the aircraft 

flies, that happens small motion of vibration in the wings now, under certain condition this 

fluttering can increase. So, the small amplitude of vibration of the wings may keep on 

increasing and that is a dangerous situation, because this would result into the mechanical 

failure of the wing, I would encourage you to look into fluttering of wings of aircraft, and this 

is the situation where the same dynamical equations applicable and your system is susceptible 

to failure simply because a and that condition.  

So, a resulting into, resulting from the properties of aerodynamic, aeroelasticity and the 

properties of air and that condition will result into a greater than 0. Similarly, there is a very 

very famous incidence, it is called Tacoma bridge failure, Tacoma bridge is in was a 

suspension bridge in Washington DC. It failed I think 7-8 decades back, may be even longer 

back and it is was a suspension bridge over a water body and since it was a water body 

obviously there was wind flowing through. 

So, due to small fluctuations, vibrations caused due to winds, the vibrations in the bridge was 

were setup and the vibrations increasingly, in increase magnitude resulted into the failure of 

the bridge. Both of these examples which I am giving are there on YouTube due to probable 

proprietary nature of the videos I am not showing them here, I encourage you to search for 

flutter and Tacoma bridge failure on YouTube and you will find both of this videos and this 

will show you that how the same equation which results, which governs the damping of the 

door closure or the damping of car pedals will they do result in mechanical failure of the 

aircraft wings as well as the failure of huge suspension bridge.  

So, this is what we have to learn about the autonomous systems, now from next week 

onwards, we will take a little more complex topic of non-autonomous system, thank you.       


