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Hello, wish you all a good day. So, we continue with our Design of an absorber session. 

To start with we have a very little a very short recapitulation of what we talked about in 

the last class. This is a figure which you had seen and where we had found out two things.  

We had found out 𝐿𝑚𝑖𝑛
´ , we found out 𝐺´ where these two are the solute free flow rates in 

mol/(kmol-h) or something like that. We definitely have the corresponding total mole of 

flow rates as G and L rather this should be Lmin.  

But, we understand that this varies along the column. Naturally, Lmin will also vary along 

the column that is the liquid flow rate across the individual ideal stages. Here, we have 

capital N number of ideal stages as shown and as we have talked about earlier. 



We have found and we have told you how to draw the operating line. The operating line 

has to be drawn with a particular Lop which is typically around 1.5 times Lmin. Now, what 

we have done is we also have told you that how to determine this Lmin, because under this 

Lmin condition this particular concentration is 𝑥𝑁
∗  which is in equilibrium with the 

corresponding 𝑦𝑁+1. 

Here, we have a small x, small i, and small y which are the mole fraction coordinates. We 

have the equilibrium line here, the equilibrium line goes like this. This is the data we have 

collected from literature and this is the starting point and this is the end-point here. So, this 

end-point concentration naturally will, in this time when we have 𝐿𝑚𝑖𝑛
´  as the flow rate of 

the solvent, this is definitely your 𝑥𝑁
∗   which is in equilibrium with 𝑦𝑁+1 that is what we 

have told right now. 

We also have derived an equation of the operating line. The operating line starts here and 

it keeps on going and it grows here like this. Now, in the operating line how is the operating 

line based? The operating line equation is based on simply the mass balance along the, 

around this envelope. What do you have here? We have said if my 𝐿𝑚𝑖𝑛
´  is a flow rate of 

my solute free solvent, it starts with a concentration of x0 and goes to a concentration of 

xn. 

So, naturally, this is the increase in change in concentration. So, that is the pickup of my 

solute which also has to match the pickup of my solute from the gas phase. The gas-phase 

enters with a composition of yn+1 and whatever goes out is with a composition of y1. So, 

this basically is xn. 

Now, in a general sense what we have is a relationship between Yn+1 and Xn. We know 

that on a mole fraction basis the corresponding values are yn+1 and xn. So, the same 

relationship could also be written in terms of the small y and the small x and it could be 

generalized.  

In the last session, the slide that we have given a generalized equation which relates this y 

and x and this y and x are the concentration of the components of vapour and the liquid 

here that their concentrations. Now, what we do is we have a very similar procedure, that 

top end of the column is having a composition of (x0, y1).  



We know these are the parameters known to us already. We know the inlet concentration 

Yn+1, the exit concentration Y1 because that is the task, the amount of solute that has to be 

removed and after removal, the concentration has to come to Y1. We also know the flow 

rate 𝐺′, now we are going to do this for a flow rate of 𝐿𝑜𝑝
′ which is nothing, but about 1.5 

times 𝐿𝑚𝑖𝑛
′ . We know 𝐿𝑚𝑖𝑛

′ . So, 𝐿𝑜𝑝
′  is also known for us. 

So, we start drawing this operating line based on this 𝐿𝑜𝑝
′ = 1.5 × 𝐿𝑚𝑖𝑛

′ . Now, we have a 

relationship between x and y this is the operating line equation. This will be more clear 

when we deal with an example with specific numerical values. 

Now, if I assume an x, I can always calculate the value of y and we know what is the 

minimum value of x. The minimum value of x is x0 and what is the maximum value of x 

that corresponds to 𝑥𝑁
∗ . So, we vary x from x0 to 𝑥𝑁

∗  which is in equilibrium which we have 

just found out as well. We find out the corresponding values of y and we plot it here as an 

operating line. 

This end on the operating line tells us that this is the corresponding composition here and 

here. So, naturally the coordinate of this point will be x0 and y1. Now, what we also know 

that if we move here what we have? We have to correspond to y1 the corresponding 

components of the liquid phase. So, this basically has got the composition x1 and what we 

do is, this particular thing if i go up we will find another operating point in the next stage 

and we keep on moving like this. 

This I did not say in details. But what we feel here is obvious that the procedure is exactly 

the same as the McCabe Thiele construction that you have done in the case of the binary 

distillation and the procedure is all is absolutely the same. Here I just like to add one more 

thing that in this specific case of an absorber, this construction looks like this and all these 

triangles that we make are above the equilibrium line. 

In the case of stripping, the operating line falls below the equilibrium line and such 

triangular constructions are constructed below the equilibrium line, but the procedure is 

the same. With this in brief we have found that after 1, 2, 3 after the third stage what we 

have is we have exceeded Yn+1.  

What is the physical significance? That means, if I have instead of Yn+1, a higher value 

which corresponds to the ordinate of this, even then we will be reaching the value of Y1 



under this operating condition with 𝐿𝑜𝑝
′ . So, this is a safe design which is a very small 

amount of margin also.  

If you want to be exact we will only say that we really do not require three stages. We do 

not require four stages. We require about 3.8. So, with this, we will move on and this is 

how you find out. 
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Here the same thing is written stepwise in a set of instructions. What we have is basically 

how to plot the operating line and it has to cover the entire range of interest for x and y for 

x naturally its x0 to your 𝑥𝑁
∗ . 
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This exactly is a procedure for finding out the number of stages required which we already 

have demonstrated. 



(Refer Slide Time: 10:07) 

 

Now, we have another case, the case that we have dealt with so far a little bit higher 

concentration of the solute in both the phases. Now if, when we know that when my 

concentrations are small; that means, my x0 is very small YN+1 is also very small. That 

means that both the inlet concentration of solute in the liquid and the vapour phase are 

small in that case capital X and small x and capital Y and y are almost the same. 

So, the operating line equation is approximately this.  

𝑦𝑛+1 = (𝐿 𝐺⁄ )𝑥𝑛 + (𝑦1 − (𝐿 𝐺⁄ )𝑥0) 

So, what we have here is a simplified expression for the operating line equation. We also 

know and what we find here, this is a relationship between y and x and it is linear that is a 

major thing and we know that under dilute solutions with low concentration Henry’s law 

is valid for most of the systems.  

Henry’s Law: 𝑦 = 𝐻𝑥∗ 



Where H is naturally Henry’s law constant and this is also a linear equation. Now, when I 

say this, we can derive an analytical expression for the number of stages required. Now, 

this analytical expression involves one thing.  

This is x, this is y and this is basically your y is equal to H x which is equilibrium line and 

here what you have is your operating line. 

Now, when you have to go from x0 to xn or the value of y has to go from here to here the 

numerical number of, it can be numerically in fact, it can be geometrically found out or 

rather its nothing, but having an analytical expression for this particular geometry, that 

how many numbers of steps are required to go from one particular point from this point to 

this point.  

So, what we find here is the expression is this and this is called the Kremser equation. It is 

a very famous equation which is based on the linearity of the equilibrium line as well as 

the operating line.  

𝑁 = log((𝑦𝑁+1 − 𝑚2𝑥𝑁) (𝑦1 − 𝑚1𝑥0)⁄ ) / log(𝐴) 

Now, there is something else. This involves a constant a which is known as the absorption 

factor. What is this absorption factor? It is written here 𝐿 𝑚𝐺 ⁄ which is also the same as 

L/G divided by small m and what is the small m? The small m is the ∆y/∆x for the 

equilibrium line and what is L by G? This is basically the slope of the operation line. So, 

this absorption factor is the slope is the ratio of the slope of the operating line to the 

equilibrium line both are linear. So, all through the range of concentration change, it 

remains constant. 

Now, if you are talking to if you are trying to handle x situation in which the equilibrium 

line is slightly curved. So, you may have one slope here and another slope here. One slope 

is m1 the other end the slope is m2 in that case, you use the square root value of (m1*m2) 

and it has been found that it also gives pretty good estimation of the m. 

Now, remember one thing the Kremser equation is primarily used for dilute solutions and 

quite naturally we will see that in the diagram that we have there our operating line is 

rather curved, but the equilibrium line is fairly linear. So, even if we try to use Kremser 



equation and that over there, we will find that it will be giving us an approximate value of 

the number of stages. 
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We have a case of an absorber design example with us. The absorber is using freshwater 

as a solvent for the removal of SO2 from the air, the total flow rate of the air is 6.5 kmol/h 

and it has got 20% SO2. So, quite naturally 20% of SO2 is 1.3 kmol/h SO2 and the rest 

amount is inert air and it is brought down to 2 % SO2. 

We find out 𝐺′ which is the solute free gas flow rate and which remains constant all 

through. We are going to use freshwater. So, naturally, mole fraction of SO2 in my water 

that comes in x0 and corresponding x0 is also 0. 

Now, we look at the equilibrium data which is available here. It is in mole fraction directly 

corresponding to this particular yN+1 is equal to 0.2 which is approximately somewhere in 

between these two, we find out that by interpolation the corresponding xN* value is 

0.00503.  



Now, the equilibrium concentration and mole fraction and we in solute free basis we find 

this as simply xN/(1- xN). So, that is how we get this value which is the solitary basis. We 

write the overall mass balance equation to find out my 𝐿𝑚𝑖𝑛
′ .  

The change in concentration of 𝐿′ is basically from 0 to 𝑥𝑁
∗  and in the case of 𝐺′, it changes 

from yN+1 to y1. So, based on this we find out that my  𝐿𝑚𝑖𝑛
′  is 236.35 kmol/h.  

What do we consider now? We consider that my operating 𝐿′ is going to be 1.5 times the 

 𝐿𝑚𝑖𝑛
′  and we get here simply 236.35 multiplied by 1.5 gives me 354.53. Now, we write 

the operating line equation here and we know my range of interest in x will start from 0 

and the maximum value can be 𝑥𝑁
∗ .  

So, what we do is if we take different values of x, I can find out the other values of the 

corresponding y and plot the operating line on the x y coordinate we have done just that. 
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Here what we have is a x y coordinate here we have is the y and here we have the x, the 

equilibrium data is here. The corresponding to the  𝐿𝑚𝑖𝑛
′  is my starting point which is the 

top of my absorber and this is the bottom end and we have noted that corresponding to 

yN+1.  What we have here is basically 𝑥𝑁
∗ . 



So, we find out here in this particular case the operating line exactly the way I have said is 

drawn here, we make the first step by touching the equilibrium line going upcoming to the 

horizontal again touching it going up at these points correspond to the compositions (x1, 

y1) and (x2, y2) and this I keep on repeating. 

You will notice one thing. In this specific case, how many stages we have considered? We 

have considered 1, 2, 3 and 4 and in the fifth stage if I go, the fifth stage is gives me or 

allows me to have instead of 0.2 possibly something around 0.26 constant inlet 

concentration and instead ideally if I can find out if I can really provide 4.1 stages, we will 

be too happy to do it.  

So, basically what we find here that we require 4.1 ideal stages here or we can say that we 

require slightly more than 4. So, this is the way you find out the number of ideal stages in 

this specific design problem if you want you can repeat the calculation yourself. 
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Now, comes the main problem. Realising the number of ideal stages in an absorber. We 

have found the ideal number of stages, but the trays are only 100 % efficient. So, naturally 



if you are going to provide a tray tower and I know its overall efficiency, the number of 

actual trays is equal to the number of ideal stages divided by the efficiency in fraction.  

Typically, if you are going to use a sieve tray, possibly you will have an efficiency value 

of 0.35 to around 0.4. So, quite naturally if I am having 4.2 divided by and I consider the 

efficiency of around 0.4. So, you understand it will be around 10 trays actual. Now, we 

talk about the other consideration that is you don't have to be going to use absorber, where 

you are going to use trays.  

You are going to use a packed tower there let us see how you find it out. In that particular 

case, we know height equivalent to a theoretical plate. Height equivalent to a theoretical 

plate it what does it mean? It means basically what exactly is the depth of packing required 

to provide one ideal stage of contact.  

We know 4.2 in this particular case has been the total number of ideal stages. So, what we 

could say here in this particular case my depth of packing should be 4.2 times HETP. Now 

remember this already has the cushion of HETP because the height of the real packing, i.e. 

the active packing length for the transfer. 
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Now, there is something here. Height equivalent to a theoretical plate is basically a 

theoretical rather it is a practical estimate. Normally, packing vendors will be telling you 

how to estimate this HETP and what exactly is the correlation to be used. HETP has to be 

a function of the mass transfer coefficient, the packing size, the flow rates and the mass 

transfer itself. 

Now, we are still solving the same problem. What do we have? We have a reference here 

that gives us an idea that how to estimate a tower diameter in case of a packed bed what 

we have here is, D equals 4.5 into the flow rate of the vapour in m3/S multiplied by a 

dimensionless factor. 

𝐷 = 4.5 × 𝑄𝑣
0.5 × (𝜌𝑣/(𝜌𝑙 − 𝜌𝑣))

0.25
 

If I do this to find out Qv, we need to find out the condition at the top, at the bottom. It is 

obvious that at the bottom you have the number of moles more in the vapour phase, but at 

the top usually, your Qv will be higher. So, normally you will be evaluating the Qv at the 

top and the bottom and you will be taking the Qv of the higher value. 

Now, based on this you will be finding out the diameter, you will also note one thing. Your 

Qv is basically in this specific particular case what happens the molecular weight initially 

is 35, and as it goes up to its close to 29. So, the number of moles here will be slightly 

more and that gives you a normally slightly higher Qv. Now, after you have estimated this 

it's time for you to estimate the HETP. 
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HETP is found from various correlations, but for vapour-liquid contacting there is a 

simplified method which is published in 2000 and it goes like this, it involves a pressure 

of the column it is for a low-pressure column. P is a system pressure in millimetre mercury, 

ρg and ρl are gas and liquid density in kg per meter cube, Ugs is a superficial gas velocity 

in m/s and Fv is 𝑈𝑔𝑠√𝜌𝑔. 

In this expression, what you find is after all if you evaluate your problem with these known 

conditions at the top and the bottom you will find there are two differences in HETP. But 

the differences are not high. I have already calculated this using this particular data here 

and we get a very small value of HETP and this comes typically close to around 0.073 

meters say 0.1 meter which makes it around 10 cm. 

You will notice one thing. It is a system in which you have a sufficient difference in the 

density you also have a sufficiently low viscosity also. That means you are expected to 

have a good mass transfer coefficient and based on that the generalized correlation gives 

us 10 cm of packing depth and with around 4.2 stages it will be about 42 cm of depth, 

roughly I will round it off to about 500 mm or I will be using half meter of active packing 

depth. 



If you look at the value of the D itself, the value of the D itself is also not much. What you 

have is basically a much smaller value and your D comes to approximately 17cm, there is 

a thumb rule. Sometimes it is said that the HETP is close to the diameter value. Here we 

have a diameter of around 17cm and we have an HETP estimate to be around 10 cm we 

find that this particular thing is also fairly ok and this thumb rule is also often used. 

I think with this I have given you a gross overview of the absorption in the three classes 

that we have concluded and what I intend to do right now after this is, we will think of real 

towers and the tower internals for mass transfer and we are expecting to focus primarily 

on the vapour liquid contacting towers. To start with we will see what are the different 

tower types and how they are to be chosen. 

Thank you. Thank you all for today. 


