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Optimality Criteria for Unconstrained Functions 

 

Welcome to module 12 of Plant Design and Economics. In this last module of the 

course, we will talk about optimum design and production schedule. Essentially, we 

will look at briefly the scope of optimization in process design. So in this first lecture 

of this module, we will talk about optimality criteria for unconstrained functions. 
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We will talk about optimality criteria for both unconstrained single variable function 

as well as unconstrained multivariable functions. 
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Optimization is an intrinsic part of process design. While designing, the designer will 

try to obtain the best or the optimal solution to a problem. Now when we try to obtain 

the optimal solution to a problem, we must have a criterion to judge whether the 

solution at hand is best or not. So while the designer seeks to obtain the best or 

optimum solution, the designer evaluates the solution in hand using certain criterion. 

 

So this criterion is known as objective function, and oftentimes is an economic 

criterion. So the designer will try to maximize or minimize an economic criterion, 

which we call objective function. This objective function is basically a function of 

certain variables known as decision variables. So these are process variables. These 

are the variables that you would like to have the optimal values. 

 

And these optimal values for the decision variables will maximize or minimize the 

objective function. The process conditions may impose certain restrictions on these 

decision variables, and thus, the decision variables may be related to each other by 

some functions, which we call constraint functions or constraint equations. For 

example, I am designing a cylindrical can and I say that volume of the can will be 

exactly equal to say 100 ml. 

 

So you know the volume of a cylindrical tank is pi r square into h, where r is the 

diameter of the can and h is the height. So in this case, if you are trying to find out 

which r and which h will be best for the designing of the cylindrical can, this r and h 

are decision variables and they are related as pi r square h equal to 100 ml. So every 



optimization problem will have an objective function that let us call that as an 

economic criterion. 

 

Oftentimes, it is an economic criterion. And then a set of decision variables whose 

optimal value we are trying to arrive at and then the process can impose certain 

restrictions on the decision variables. The decision variables cannot take any values 

they want. Then, these restrictions that the decision variables will satisfy will be 

expressed by a set of equations known as constraint functions or constraint equations. 
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Let us again look at that design of cylindrical can example. So we want to design a 

cylindrical can which will hold at least 500 ml of a liquid. We also specify that height 

of the can will be between 7 cm to 12 cm and the radius of the can will be between 3 

cm to 7 cm. Note that there may be various values of r and h which may satisfy this 

restriction that the volume will be enough to hold at least 500 ml of liquid. 

 

So you have to find out that r and that h which will definitely hold at least 500 ml of 

liquid but will also have minimum cost for this cylindrical can. Now what will be a 

measure of this minimum cost? We can minimize the material required. So that will 

minimize the construction cost or fabrication cost. And you can minimize the material 

by minimizing the area of the cylindrical can. 

 

So the area of the cylindrical can will be expressed as a function of radius and height 

of the can and that will give me the objective function. Note that the area of the can, 



can be expressed as a function of r and h where the curved area is 2 pi r h and also the 

area of two ends at the bottom and at the bottom are pi r square plus pi r square is 2 pi 

r square. So this is the objective function. 

 

Here we would like to minimize the objective function, so that we are minimizing the 

area. And by minimizing the area, we are minimizing the amount of material required. 

We are assuming that we have we are we have been given a metal sheet of constant 

thickness. So in that case, minimizing area and minimizing the volume or amount of 

material are all equivalent. Now is there a constraint? 

 

Yes there is a constraint because we are saying that the can must hold at least 500 ml 

of liquid. So V equal to pi r square h represents the volume of the can. So pi r square h 

must be greater or equal to 500. So that is the constraint. Now the decision variables r 

and h are not free to take any values. In certain forms they can take, they can take any 

values, we will come to that later. 

 

But in this particular case, we have seen that the height must be bounded between 7 

and 12 and the radius must be bounded between 3 and 7. So these are the bounds on 

the decision variables. So this represents an optimization problem for the design of a 

cylindrical can. So we see the components as objective function, decision variables 

and constraints. There are simple bounds which is also one type of constraint. 

(Refer Slide Time: 07:57) 

 



So if the objective function is such or the optimization problem is such that the 

decision variables are free to take any values we call those problems as unconstrained 

problems or unconstrained functions. Now these functions can be single variable 

functions. It can also be multivariable functions. So here you see an example of single 

variable unconstrained function where we just maximize 4 x cube + 3 x square + 50. 

 

But do not restrict the value of x. So x can take any values in the real space. The next 

one is a multivariable unconstrained function. It is the function of three variables. We 

minimize this function that means, we have to find out the value of x 1, x 2, x 3 such 

that this function takes on minimum value. Again the values of x 1 and x 2, and x 3 

are not restricted. 

 

So such problems are known as unconstrained functions or unconstrained problems. 

But a general optimization problem will be constrained problems. And these 

constraints as we say that they are functions of the decision variables. They can be of 

equality type, they can also be of inequality type. So you have a general formulation 

of an optimization problem, where you have this objective function. 

 

Here it is shown for two variables, it can be of n variables. You have a constraint 

which is of equality type. Note that x 1 square - x 2 square - 25 = 0. And then you 

have an inequality constraint. Here it is greater or less than 50, the right hand side. 

And also x 1 greater or equal to 2, x 2 greater or equal to 0. So this is a general 

problem. So this is written where there is only one equality type constraints and there 

is only one inequality type constraints. 

 

But in general there can be any number of equality constraints and there can be any 

number of inequality constraints. Now here a note on the classification of such 

general optimization problems. In case the objective function is linear in decision 

variables and also all constraints are linear, we call that kind of optimization problem 

as linear programming problem. 

 

So in case of linear programming problem, you have the objective function linear and 

all the constraints are also linear functions of decision variables. However, in case we 

have objective function nonlinear or the constraints are nonlinear or both are 



nonlinear, we have a nonlinear programming problem. For example, this is a 

nonlinear programming problem. 

 

But, had this been linear, had this been linear and had this been linear would have got 

a linear programming problem. There is a special class of problem known as quadratic 

programming problem, where the objective function is quadratic, but all the 

constraints are linear. 
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Now let us define what we mean by minimum or maximum or local minimum or local 

maximum. A function is said to have a relative or local minimum at x equal to x star 

if the value of the function at x star is small is minimum compared to value of the 

function at any other point in the neighborhood of x star or in the vicinity of the x star. 

 

Similarly, a point x star will be called a relative maximum or a local maximum if the 

value of the function at x star is greater or equal to the value of the function at any 

other point in the neighborhood of x star. So these neighborhoods are shown here. The 

neighborhoods can be small. It can be sufficiently small. So for single variable 

functions I have plotted safe x versus x and you see these two represents local 

maximum. 

 

And it happens that there are two maxima here and these local maxima also happens 

to be global maxima. And this is a minimum. So in the neighborhood of the point 

shown these values, the function values are minimum or maximum. Now consider a 



function f x equal to x cube and consider its value at x equal to zero. So the 

neighborhood is shown. 

 

At that point if x equal to zero, the function x cube neither attains maximum nor 

attains minimum. Such points are known as point of inflection. 
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So we talked about single variable function. Here there are images of two variable 

functions or multivariable functions. The simplest multivariable function is two 

variable function. Note this is represents maximum, this represents the function 

minimum whereas this and this if you look at these shown points, that dots, at those 

points the functions neither attains minimum nor at its minimum. These are saddle 

points. 

 

So these are equivalent to point of inflection for single variable function. So we have 

maximum, we have minimum, we also have point of inflection or saddle point. 
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Now let us define necessary conditions for optimality and sufficient conditions for 

optimality. The conditions that must be satisfied at the optimum point are called 

necessary. If a point does not satisfy the necessary conditions it cannot be optimum. 

But remember satisfaction of necessary conditions does not guarantee optimality of 

the point. So necessary conditions are those that must be satisfied at the optimum 

point. 

 

If the point does not satisfy necessary conditions, it cannot be optimum. But if it 

satisfies, it does not guarantee that that the point will be optimum. So that guarantee 

will come through sufficient conditions. If a candidate optimum point satisfies the 

sufficient condition, then it is indeed an optimum point. If the sufficient condition is 

not satisfied or cannot be used, we will not be in a position to draw any conclusion 

about the optimality of the point. 
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Now let us write down the optimality criteria for unconstrained single variable 

functions. First, the necessary conditions. Consider a function f x in the interval a to b. 

We say that it has a relative minimum at x = x star. So x star lies between a and b. 

Now if the derivative of this function at x star exists and if x star is a relative 

minimum, we will have the derivative of the function evaluated x star equal to zero. 

 

So that is the necessary condition. So at x star the function value will be zero. The 

problem is, this theorem does not say that the function will necessarily have a 

minimum or maximum at every point where the derivative is zero. If the function 

attains a minimum or maximum at a point x = x star, the derivative of the function at 

evaluated x star will be zero. 

 

But, the theorem does not say that the function necessarily will have a minimum or 

maximum at every point where the derivative is zero. In general, a point x star at 

which the derivative of the function is zero we call the stationary point or the critical 

point. The stationary point can be minimum or can be maximum, but it can also be 

point of inflection or saddle point. 

 

So if the function attains, if the derivative of the function at x star is zero, we cannot 

say this is minimum or maximum. It can be minimum, it can be maximum, it can be 

point of inflection or saddle point. 
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So the necessary condition is this that the derivative of the function at x star will be 

equal to zero. So that is the first order necessary condition. The second order 

necessary conditions for local minimum is that the second order derivative evaluated 

x star will be greater or equal to zero. Second order necessary conditions for local 

maximum will be the second order derivative is less or equal to zero. 

 

So first order necessary condition the derivative of the function evaluated x star will 

be equal to zero. Second order necessary condition if x star is local minimum the 

second order derivative is greater or equal to zero. If x star is local maximum the 

second order derivative is less or equal to zero when evaluated at x equal to x star. 
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Now let us consider that at point x star the first derivative is zero df dx evaluated x 

star equal to zero. Also the second order derivative is zero, third order derivative is 

zero, so on and so forth. And the first nonzero higher order derivative is denoted by n. 

So first nonzero higher order derivative is denoted by n. Now this n can be either even 

or it can be odd. 

 

Now if n is even, then the x star is local minimum if that derivative is positive. And x 

star is local maximum, if that derivative is negative. So in terms of second order 

derivative, second order derivative so it is even, n equal to even; n equal to 2, equal to 

even. So if the second order derivative is greater than zero, then the point x star is 

minimum. If the second order derivative is negative at x equal to x star, the point x 

star is maximum. 

 

Now let us consider the other case where the first nonzero higher order derivative n is 

odd. In that case, the point x equal to x star represents a point of inflection. For 

example, let us say f x equal to x cube. So the first derivative is 3 x square. So 3 x 

square equal to zero will give you x equal to zero. So x equal to zero let us say, we are 

evaluating x equal to zero, which is a stationary point, is minimum or maximum. So 

evaluate. 

 

So this df dx is equal to zero. Then second order derivative, which is 6x. So that is 

also zero at x equal to zero. Third order derivative is 6 which is greater than zero. But, 

this is third order derivative, so n equal to 3 equal to odd. So x equal to zero for 

function f x equal to x cube is neither minimum nor maximum, it is a point of 

inflection. 
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So let us take a quick example. Determine the minimum and the maximum values of 

the function f x = - x cube + 3x square + 9x + 10. We have plotted the function is a 

single variable function. So you can plot. You can clearly see that x equal to -1 and x 

= 3 minimum and maximum of the function. So let us use so we must get these values 

when we apply the conditions of optimality for this function. 

 

So let us use first order condition to find stationary points. So take derivative of this 

function set that equal to zero and we obtain x star equal to 3 and -1. Now we have to 

evaluate whether x star = 3 is minimum or maximum. Same for x star = -1. So for that 

we must take help of second order or higher order conditions. Let us take second 

derivative which is d square f d x square = -6x + 6. 

 

Now put x = -3, put x = 3 and x equal to -1 in these expression for second order 

derivative. When x = -1, the second derivative takes 6 + 6 12 which is greater than 

zero. So it is minimum, x = -1 is minimum. When x star = 3, we have -18 + 6 which is 

-12, the value of the second derivative is -12 which is less than zero. So x = 3 is 

maximum. 
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Now we will look at the optimality criteria for multivariable functions. Now in case of 

single variable functions, we talked about the first order derivative equal to zero as the 

first order necessary conditions for optimality. Here we will use the gradient vector 

because it is a multivariable function. So we will consider the gradient vector. And the 

gradient vector will be equal to zero will be the first order necessary conditions. 

 

What is gradient vector? So consider an n variable function, so the gradient vector 

will be the vector of all first order derivatives of this function with respect to each 

decision variables. So the gradient vectors elements will be del f del x 1, del f del x 2, 

del f del x 3 up to del f del x n. Now the higher order conditions, second order 

condition which was represented by second order derivative for single variable 

function. 

 

For a multivariable function, we will use Hessian matrix. This is the Hessian matrix of 

n variable function. Note that this is a symmetric matrix. So for a function with n 

variables, this will be an n cross n symmetric matrix. The elements are all second 

order partial derivatives of this function with respect to its decision variables. So the 

diagonal elements will be like del square f del x 1 square, del square f del x 2 square 

so on and so forth. 
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For example, let us consider this function f = 2x 1 square – 3x 1 x 2 + 2x 2 square, a 

two variable function. So what is the gradient vector? Del f del x 1, del f del x 2. So 

this represents the gradient vector. Del f del x 1 equal to we evaluate 4x 1 – 3x 2 and 

del f del x 2 will be -3x 1 + 4x 2. So this represents my gradient vector. And what will 

be Hessian? So this is a two variable function. So Hessian matrix will be a two cross 

two symmetric matrix. 

 

So the elements will be del square f del x 1 square, del square f del x 1 del x 2, del 

square f del x 2 del x 1 and del square f del x 2 square.  Now their symmetric matrix 

this and this will be same. So you just evaluate these quantities and put it there and 

then you will have this as Hessian matrix. So this is how you can evaluate the 

elements. Let us consider another function x cube – y cube + 9xy. 

 

Evaluate the gradient and evaluate the Hessian. Now you see, in case of the previous 

function which was a quadratic we got the Hessian as a matrix with constrained 

numbers. But here the Hessian is a function of x and y, this x and y. So the Hessian is 

a function of x, y. For quadratic function it will be a constraint matrix. 
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Now we have to define two, three terms here. Positive definite matrix, negative 

definite matrix and indefinite matrix. A real symmetric matrix which is a Hessian 

matrix actually, a real symmetric matrix A is positive definite if it has only positive 

eigenvalues or equivalently the leading principal sub-matrices of the matrix A have 

positive determinants. So the leading principal minors all have positive values. 

 

So let us consider this Hessian matrix so it has eigenvalues 7 and 1. Both the 

eigenvalues are positive. So this matrix is a positive definite matrix. You know that to 

find out the eigenvalues you can solve this determinant equation. So solve this for the 

values of lambda, you will get these. So those are the eigenvalues. Both the 

eigenvalues are positive. So it is a positive definite matrix. 

 

We can also say in terms of leading principal sub-matrices, find out those 

determinants. So the first one, the first leading principal sub-matrices is 4, which is 

greater than zero. The second one is the determinant of the matrix itself. So both are 

positive, both are positive. So we get the same conclusion what we obtained using a 

eigenvalues that the given matrix is positive definite. 

(Refer Slide Time: 30:11) 



 

Similarly, a real symmetric matrix is negative definite if all the eigenvalues of the 

matrix are negative or equivalently. The leading principal sub-matrices have 

determinants with alternating signs, this is important, alternating signs. So it starts 

with negative then positive then negative then positive so on and so forth. 

 

The first determinant of the leading principal sub-matrices will have negative 

determinant, then it will have positive determinant and so on and so forth. So 

alternating signs starting with negative. Let us take this example. Consider this 

Hessian matrix or any matrix, real symmetric matrix. Find out the eigenvalues. Its 

eigenvalues are -1 and -3. So both are negative. So it is negative definite matrix. 

 

Find out the determinants of the leading principal sub-matrices. First is -2, which is 

less than zero. Next is the determinant of the matrix itself which is 3, which is greater 

than zero. So first negative next positive. So this pleads the definition of negative 

definite matrix. 

(Refer Slide Time: 31:33) 



 

If a real symmetric matrix, a real symmetric matrix is positive semi-definite if some 

eigenvalues are positive, some eigenvalues are zero. So it has non-negative 

eigenvalues. Equivalently all principal minors are greater equal to zero, all principal 

minors are greater equal to zero. Similarly, a real symmetric matrix A is negative 

semi-definite if the matrix has some eigenvalues zero some eigenvalues negative. 

 

So that that basically means that eigenvalues are non-positive. And the equivalent 

condition in terms of principal minors are odd order principal minors will be less or 

equal to zero and even order principal minors will be greater or equal to zero. The real 

symmetric matrix A is indefinite, when it is neither positive semi-definite nor 

negative semi-definite. 
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So let us consider this matrix. Let us evaluate the eigenvalues. One eigenvalue is 

positive another Eigenvalue is negative. Note that square root of 2 is greater than 1. 

So one eigenvalue is positive one eigenvalue is negative, so it is an indefinite matrix. 

In terms of principal minors first one is greater than zero, second one is negative. 

 

So it does not fit the alternating sign criterion, because there first one has to be 

negative next it will be zero. So this is indefinite matrix. 
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So in summary the Hessian matrix will be positive definite when all eigenvalues are 

greater than zero, positive semi definite when all the eigenvalues are greater or equal 

to zero. Hessian matrix will be negative definite when all the eigenvalues are less than 

zero and Hessian matrix will be negative semi-definite when all the eigenvalues are 

less or equal to zero. 

 

Note that these characterization of Hessian matrix also tells us whether the function is 

strictly convex, convex, or strictly concave or concave. 
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Now let us tell the optimality criteria for unconstrained multivariable function. So the 

necessary condition is this that the gradient vector evaluated at x star will be equal to 

zero. So gradient vector is equal to zero at the stationary point. Now evaluate the 

Hessian matrix at the stationary point. If the Hessian matrix is positive semi-definite, 

then this is a necessary condition for local minimum. 

 

If the Hessian matrix is positive definite at stationary point x star, then this is a 

sufficient condition for local minimum. If at the stationary point the Hessian matrix is 

negative semi-definite then this is a necessary condition for local maximum. And if at 

x equal to x star the Hessian matrix is negative definite, then this becomes a sufficient 

condition for the point to be local maximum. 

 

If at the stationary point the Hessian matrix is indefinite, then the point is saddle 

point. 
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So now let us apply these conditions to this function of two variable. f x = x 1 cube – 

x 2 cube + 9x 1 x 2. So evaluate the first order necessary condition. I take the 

gradient, set that equal to zero. That means take del f del x 1 equal to zero. Take del f 

del x 2, set that equal to zero. Solve these two equations. Simultaneously two variable 

two equations take and solve. I obtain two solutions 0, 0. That means x 1 = 0, x 2 = 0. 

 

 And also another solution x 1 = 3, x 2 = - 3. So you have to evaluate both whether 

they are minimum, maximum or saddle point. So evaluate the Hessian.  Evaluate the 

Hessian at first, say point 0, 0. We see that the eigenvalues are -9 and 9. That means 

one eigenvalue is positive another eigenvalue is negative. So Hessian matrix is 

indefinite. So x 1 = 0, x 2 = 0 this point is saddle point. 

 

Now let us consider the other one 3, -3. Evaluate the Hessian at x = 3, x 1 = 3, x 2 = -

3. Eigenvalues are 9 and 27, both the eigenvalues are positive. So Hessian matrix is 

positive definite. So this point is a local minimum. So these are the criteria for 

optimality criteria for single variable unconstrained function and multivariable 

unconstrained function. With this we conclude our discussion here. 

 


