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Welcome to module 7 of plant design and economics. In this module we are talking about reactor 

network synthesis. Now reactor network synthesis is essentially establishing the configuration of 

chemical reactors and establishing interconnections, among them. Reactor network synthesis for 

complex reactions is much more complex problem compared to synthesis for single reactions. In 

this module we will learn about a method known as attainable region.  

 

Attainable region has a geometric flavor in it and will start with the fundamentals of attainable 

region today. In the next two lectures will learn more about attainable region method through 

examples.  
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So today we will start with fundamentals of attainable region. So the kind of problem that you 

are talking about is as follows. Given the complex reaction mechanism and kinetics, what is the 

optimum type and arrangement of the reactors that would maximize product yield? So consider 

the given chemical reaction. A reversibly undergoes to B, which irreversibly undergoes to C and 

2A goes to D, the rate expressions are given.  



 

Now we can carry out this reaction in various configurations of chemical reactors. So what is the 

optimum type and arrangement of the reactors that would maximize the productivity, for 

example let us say I want to maximize the product of B. What should be my optimum reactor 

configurations.  
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The traditional way for reactor synthesis is to consider a large number of combinations of units. 

Let us say we will make use of CSTR and PFR for simplicity. So the traditional method will be 

to use a large number of combinations of CSTRs and PFR and compute their performance for 

various designs. Obviously this method is TDS. It takes lot of time and does not ensure that the 

best reactor network has been found.  

 

So there are two approaches one is attainable region, which is a geometric method, another is 

optimization method where you formulate the reactor network synthesis problem as an 

optimization problem and solve the optimization problem to obtain the optimal reactant network. 

In this module, we will learn about attainable region.  

(Refer Slide Time: 04:24) 



 

So let us refine the reactor network synthesis problem. Suppose we are given systems of 

reactions with known reaction kinetics, we are given the feed state and we are given a number of 

fundamental processes such as chemical reactions, mixing, heating or cooling. So we have been 

given units to perform these fundamental processes. For example CSTR PFR mixing, heating, 

cooling etcetera.  

 

Now once these are given would like to know what is the best combination of these fundamental 

processes that will give us the optimal chemical reactor network, as well as the optimal operating 

conditions to achieve my target? So every optimization problem will have an objective functions. 

The target is your objective function which is frequently considered as process economics. But 

also safety concern, environmental concern can also be considered process objectives.  

 

When you talk about attainable region will consider only system of steady flow chemical 

reactors. So process of mixing and reaction only. So we will talk about CSTR, PFR and mixing 

of streams. So, these are the three fundamental process we will consider to derive at an optimal 

reactor network through method of attainable region. And we are considering isothermal system 

with no volume change or reaction or mixing will be considered.  

 

So, only isothermal systems with no volume change on reaction or mixing will be considered. 

Note that although we are considering here only continuous operations, we are making use of 



only CSTR and PFRs but in the literature at enabled region has also been used to obtain batch 

chemical reactor networks. But for the purpose of this course will restrict ourselves to continuous 

processes, again we will also restrict ourselves to isothermal systems with no volume change on 

reaction or mixing.  
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Attainable region is a graphical method that is used to determine the entire space of achievable 

concentrations using fundamental operations such as reaction and mixing. So when a heat stream 

enters a reactor or a reactant network and from the other effluent from the reactor come up. So 

we are interested in the concentrations of the desired products in the effluent stream. The product 

distributions in the fluid stream the concentrations of the desired product in the effluent stream.  

 

Attainable region is a graphical method that can be used to determine all the achievable 

concentrations. In the reactor effluent stream that can be obtained through chemical reactor 

networks and using fundamental operations such as CSTR, PFR and mixing. Attainable region 

can be used to determine the highest selectivity. It can be used to identify reactor configurations 

for optimal products.  

 

The attainable region was first introduced by Horn in 1964 and later it was extended by Glasser 

Hilderbrandt and co-workers during 1987 to 90s. Even now also the research on attainable region 

is very active in literature.  
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So what is attainable region? As we just discussed, it gives you the all achievable concentrations 

by fundamental operations using reactant networks. Now what you see in figure are examples of 

attainable region. So consider these entire region, entire color region either in this figure or this 

figure. Any point within this region represents a concentration. Note that these figures are plot of 

concentration of A versus concentration of B.  

 

So we are considering a reaction let us say a complex reactions and we are interested in only 

concentration of A and concentration of B. So A and B are my important species for the 

chemical reactions. Let us say A is the feed and B is the desired product. Let us say there are 

other species such as C, D, E etcetera in the complex network, in the reaction network. But let us 

say the reaction mechanism is such that it is possible to express the concentration of B by 

looking at concentration of A alone.  

 

So it is possible to make a plot of CA versus CB and obtain all the possible concentrations that 

are achievable through a reactor network see that can be achieved. Then we can find out my 

desired concentrations in the reactor effluent from such a figure using an objective function now. 

For example the point G corresponds to the maximum concentration of CB, maximum 

concentration of B.  

 



And here their concentration is this. So this point corresponds to the concentration of A and B in 

the effluent of some reactor network. Note that we start with say 1 mole per liter of A and during 

reaction it has decrease to this value whereas B has increased to this value. Similarly each and 

every point on this region is achievable by some reactor network. So, attainable region method 

will allow us to find out those reactor networks.  
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So, attainable region is a systematic geometric method for the synthesis of a complex chemical 

reactor network. Will illustrate this method by considering only isothermal steady state 

continuous operation, so make use of CSTR, PFR and also as fundamental process will be using 

mixing, mixing of streams. The Attainable region defines all the achievable compositions that 

may be obtained from a network of chemical reactors as we discussed in the previous slides.  

 

We will consider attainable region that represents the set of all possible steps that can be 

achieved by combination of two fundamental processes reaction and mixing. Mixing is 

performed by a continuous start time reactor CSTR, while reaction is performed by the plug flow 

reactor. Note that CSTR and PFR stay at completely two ends when it talks about the mixing 

within the reactor. 

 



CSTR represents a reactor, which is completely mixed whereas the PFR there is no axial mixing. 

So the operation in this CSTR and PFR respectively mimics the two fundamental processes, such 

as mixing and reaction.  
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So now we will look into some introductory elements that are necessary to understand and 

construct attainable region for chemical reactant networks.  
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First the phase plane and phase portrait consider a system described by these two differential 

equations. dx1d2, dx1 dt = f1 dx2 dt = f2, f1 and f2 are both functions of x1 and x2. Now with 

various initial conditions I can solve these two differential equations and then can mark a plot of 



x1 versus x2. So the trajectories of x1 and x2 can be plotted and what I will get is a phase portrait 

on the phase plane of x1, x2.  

 

So a phase-portrait is a geometric representation of the trajectories of a dynamic system in the 

phase plane. Each set of initial condition is represented by a different curve because you can 

solve these differential equations using various initial conditions and for each initial condition 

you will obtain a different curve.  
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Now, let us consider a batch chemical reactor and let us consider that we are interested in two 

components concentration of A and concentration of B in the reactor. So I measure the 

concentration of A and concentration of B in the batch reactor at various time intervals. So this 

table gives you the data for concentration of A and concentration of B starting from minute 1 to 

5. Now, I can make a plot of concentration of A and concentration of B on CA, CB diagram.  

  

Note that these 5 points CA, CB are plotted using CA CB axis. So you say the concentration data 

has been plotted on the phase plane. Note that we have done away with the time by making a plot 

of CA versus CB. So each point on the CA, CB plane represents a concentration in the reactor.  
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This is another example consider the benzene toluene system. This figure shows you how the 

concentration of benzene changes with time and how the concentration of toluene changes with 

time. So as the reactant the concentration of benzene decreases with time and as the product 

concentration of toluene increases with time goes through maxima and again comes down. Now 

these time data concentration of benzene versus time and concentration of toluene versus time 

this can be plotted on concentration of benzene versus concentration of toluene.  

 

So, this is the phase plane plot that I obtained from benzene toluene system from this 

concentration plot. For example, let us consider time 0.5 hour. So read the concentration of 

benzene and the concentration of toluene. So concentration of toluene is around 0.06, whereas 

concentration of benzene is quite small. This value may be even 0.05 around 0.05, so 0.05, 0.06, 

0.05 around 0.05 or close to 0.01, 0.05, 0.06 something like that and 0.06 so obtain this point. 

 

Similarly you obtain all other points and get this phase plane on concentration of benzene and 

concentration of toluene. So we will make use of such phase plane for construction of attainable 

region. 
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Now there is an interesting property of attainable region, attainable region has to be convex. So, 

attainable region has the property of convexity. Take any two points A and B in a region. The 

region will be convex if the line segment A B lies completely within the region. So a convex 

region is defined as follows. You take any two points within the region join these two points by 

line segment it if every point on this line segment lies completely within the region this is convex 

region.  

 

Otherwise it is non convex region, concave region. Note that this is convex region, whereas this 

is not convex because when I join A and B by the line segment there are several points on the 

line, which lies outside the region. In a converse region all the vectors point out into the region or 

there tangent at most to its boundary or 0. So when you have a convex region all the vectors 

point out into the region or they tangent at most to its boundary or 0. 

 

This will make use later when you discuss more about the attainable region. Let us now define 

convex hull. The convex hull of a set of points is defined as the smallest convex polygon that 

encloses all of the points in the set. So the convex hull of a set of points is defined as the smallest 

convex polygon that encloses all of the points in the set. The polygon has no corner that is bent 

inwards.  

 



A concave region can be transformed into a convex 1 by adding a convex hull. So it is possible 

to convert a concave region into a convex region by adding a convex hull.  
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So, let us see how we do that. What do you see is example of convex polygon and non convex 

polygon. Now you consider these sets and here look at the polygon constructed by the green line. 

So these polygon represents the smallest polygon and the smallest convex polygon that encloses 

all the points. So, this is the convex hull. Another example of convex hull so; this polygon 

represented by this blue line is the convex hull.  

 

Whereas the polygon represented by this green line is not a convex hull, it represents a concave 

hull. But note that the convex hull the concave polygon has been converted to a convex polygon 

by putting a convex hull around it.  
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Next will define a term concentration vector, consider that you have a set containing N species 

with moral concentration c1, c2 up to cn. These concentrations can be represented by vector 

containing n component concentrations. So we can represent the concentration vector as the 

column vector which contains concentrations of all the species in your reactor. These 

concentrations may be a result of mixing pure components or reactions between them.  

 

So in two dimensions I can make a plot C represents a unique coordinate in concentration space 

that may indicate the instantaneous concentrations within a reactor or the resulting composition 

form from a combination of mixing many effluent streams. So in two dimensions, you can make 

a plot of C1 versus C2 and any point within this C1, C2 plot will represent a concentration 

vector.  
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A mixture can be represented by a vector where the elements of the vector correspond to the 

species concentrations of the mixture. So look at this CA, CB plot we have represented C1, C2, 

C3 etcetera as different vectors and each vectors represents a mixture. For example, C1 is this 

vector and what are the components of the vector? CA and CB. So, this is CA and this is CB, 

similarly C2, similarly C3.  

 

Multiple mixtures can be represented as vectors from the origin in concentration space that is 

what we have done in the figure. Since each mixer is represented as a vector each is associated 

with a unique magnitude and direction. You can find out the direction, you can find out the 

magnitude of the vector as shown for vector C1.  
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Now let us see how we represent mixing geometrically when density is assumed constant mixing 

as a special geometric property. Mixtures lie on a straight line joining the two concentrations 

being mixed in concentration space. Mixing is therefore a linear process. If you look at the figure 

the concentration plots C1 and C2 represent 2 mixtures. So C1, C2 are 2 vectors representing 

concentrations. 

 

Now if I mix them I may get siesta and siesta will be obtained as a linear combinations of C1 and 

C2. So siesta is obtained as a linear combination of C1 and C2. So siesta equal to lambda C2 + 1 

– lambda C1, where lambda is values between 0 and 1.This we can extend for any number of 

compositions on necessary 2.Graphically, it is easier to represent 2 compositions. But for any 

number of k compositions this relation will hold.  

 

That the mixtures when you add say C1, C2, C3 upto Ck the resulting mixtures will be linear 

combinations of this C1, C2, C3 up to Ck as shown in this figure equation. Here again lambda 1, 

lambda 2 up to lambda k must be equal to 1.  
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This figure again shows geometrically the concentrations and mixing. So you have two vector 

C1 and C2 representing concentrations. So mixtures now when you add them you get siesta. 

Although we have assumed constant density, the mixing may be viewed as a linear process even 

when this assumption does not hold. For example gaseous mixture, or highly non-ideal mixtures, 

however in such cases we can replace the concentration by mass fraction.  
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Now consider this figures this is a concave set. This region represents let us say achievable 

points by an arbitrary set of reactors or feed points. So these concave set let us say it is represents 

achievable points by an arbitrary set of reactors or feed points. So, apparently it does not seem to 

be possible that will be able to obtain the concentrations lying within the concave region.  



 

So the region of concavity does not appear to be part of the achievable set. But when you add C1 

and C2 that means when you mix this two points C1 and C2, the straight line connecting point 

C1 and C2 is now attainable and points on the line C1 C2 can be used to achieve other attainable 

region in the concavity. So when you add C1 and C2, it will fill in the concave region. So from 

the concave set here, I obtain the convex set through mixing.  

 

So mixing is able to fill in concave regions and what initially appeared to be not achievable now 

becomes achievable. So mixing expands the region the concave region can be converted to a 

convex region.  
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This leads to an important result given a convex set of points there are infinitely many ways in 

which to achieve points within the region. Interior points can be obtained as intersection of many 

states that all cross at the same point. There is generally no unique combination of boundary 

points that can be used to achieve points located within the region. So, what do you mean is let 

us consider point x1, x2 and x3.  

 

Now point x3 can be obtained by linear combinations of point x1 and x2, x3 can also be obtained 

by let us say point x4 and point x5 by linear combinations of point x4 and x5. So we can 

consider several such mixing where the line passes through x3, x3 is a point within the region. 



So there may be various combinations of points on the boundary of the region which when added 

will get a point within the region. 

 

So this leads to an important conclusion that one is only concerned with the boundary points of 

the attainable region. As all other points within the region may be attained by mixing attainable 

region must therefore also be convex formed from the convex hull of its boundary points.  
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Next we will define one more term known as reaction rate vector. We have defined a mixture 

concentration compactly as a vector of species concentrations. Similarly it is also possible to 

form a vector associated with the rate of reaction. Let us consider this reaction A to B to D and A 

to E. If A and B are the components of interest to the problem then the concentration vector is of 

course is a vector with two components CA and CB.  

 

It is natural to express the corresponding rates of reactions for A and B as the two component 

column vector, will call that vector as rate vector. So rate of reaction for A and for B so the rate 

vector in C.A, CB space will be a 2 dimensional vector with components rate of reaction rA and 

rB. For example for this reaction if these are the rate constants given, rate expressions given we 

can find rA and rB and can put it here and we get the reaction vector, reaction rate vector.  
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So this figure shows the reaction rate vectors. So, several rate vectors have been shown on the 

concentration space. So, all can be obtained from such expression for the rate vector. So, you 

must know the reaction rate expressions for the chemical reaction at hand.  
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Now, let us assume that we are now given a system of reactions with a known set of kinetic 

expressions for each component. Similar to concentration vector the rate of formation for each 

species is also expressible by rate vector and that is what we are seen in the previous slides. For 

each point in the concentration space the rate vector can be computed and thus a vector field is 

formed we call these the rate field. 

 



Note in the figure in the concentration space, we have shown all the rate vectors and these 

constitute a vector field and we call this a rate field.  
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This figure shows you a PFR trajectory interest, several PFR trajectories are shown. Starting 

from different initial concentration of the feed and the rate vectors are also shown. If we focus 

your attention on only one particular trajectory, the rate vectors are seen to be tangent to the PFR 

trajectory. This is another important interesting property the rate vectors are tangent to the PFR 

trajectory.  

 

With this we will discuss our discussions on attainable region here and we will continue with this 

discussion in the next class.  


