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Hello everyone, welcome to the another class of Fundamentals of Particles and Fluid Solid

Processing. Today we will be seeing and learning this Particle size distribution.
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Now, why this particle size distribution is essential? Because, you can now understand that

we are talking about collection of particles or a mixture of particles a bulk material handling

in industrial cases. Now, in those cases although we have previously discussed about a single

particle  characterization,  but  now it  is  essential  to  understand  that  handling  of  multiple

particle or millions of particles together is what happens at the industry level.

Now they are; that means, if you have a storage of tons of this fine particles or different size

particles,  how do you quantify  that  bulk  material  or  the  storage  of  material  by  a  single

number. So, it is essential to quantify a system that consist of a wide range of particle size by

a single number. So, that people can understand that ok we are dealing with this sample and it

can vary from the sample to sample.



So, very simple way to represent that is what I have shown in this slide by this frequency

distribution or cumulative mass fraction curve. So, this figure is essentially shows you that

this x axis is the particle size, and y axis is what we called the cumulative mass fraction or

let’s say the mass fraction. Now, here you can see that the mass fraction of a sample the sum

of that will be essentially total 1. Now, this curve shows that, that you take a certain size of

particle and below that whatever is the size the mass fraction of that particle you start plotting

the those values.

So, for example, you have let us say till 100 micron of particle and then from 0 or let us say

from 1 micron, 2 micron, 3 micron, 10 micron, 50 micron etcetera so, this type of or this size

of particles you can measure. So, let us say whatever the mass of the particle below 500 let us

say 50 micron size, you can have its mass fraction you plot that point. Similarly, whatever the

particle mass fraction is there below 70 micron, you can weigh that, you can find out the

overall mass fraction for that size and you can get another point. So, by connecting these

points you can basically come up with a cumulative mass fraction curve.

Now, what happens from this cumulative mass fraction curve, once you have such kind this is

a typical example I am showing here. So, what happens here that once you get such curve,

which essentially goes to maximum value of 1, because the total mass fraction cannot exceed

the value of 1. Now here once you draw such curve, you find the median of this graph, how

do you find the median? You take the 50 percent of the total sample and then you draw a

horizontal line you find out where it intersects and you get a value at the x axis which is the

median of this sample.

So,  if  you  have  a  sample  that  consist  of  particle  size  up  to  100  micron,  and  has  such

cumulative mass fraction curve.  You find the median and you find that it’s  characteristic

dimension of the particle or by and then by the number that you can designate the sample is

by around 45 or let us say 44 micron. So, this is a single number we have deduced by which

we can define this whole sample by a single number.

So, this is one of the example easiest example that can happen, and also such curve or the plot

when we do we call these are the cumulative mass fraction curve ok. Or let us say the size

frequency based on cumulative mass fraction. The other size frequency can happen when we

take the slope of at the each and every point of this curve and we plot, which comes of like

something this kind of a plot which called the differential frequency distribution.
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So, and here in the y axis you can see that this is the slope of the previous graph that I have

shown. So, this parameter dF by the frequency or let us say this is the dx we can have F(x), a

function of x which we can say this is the differential frequency distribution.

Now, in  this  case the mode which represents  the most occurring  number or here in  this

particular case the most occurring size of the particle in that sample is represented by the

mode value of this whole plot ok. So, this peak basically represents this is the mode of this

curve, so again, so this kind of a number again similar to 44 or 45 micron is.

So, basically we come up with the size distribution which can be plotted in both the way, one

is directly by cumulative mass fraction plot, the other way is to find the differential frequency

distribution plot. And by the median and mode we can find out a single number by which we

can characterize that sample or that whole range of the size distribution we can designate one

number to represent that collection of particles.

Now, here this is again this is a representative image or representative graph where only one

single peak we have shown. Now, there can be several peaks in a mixture or a collection of

particles. Now, those peaks basically represents that the maximum number of particle in that

size, then it is occurring in that sample.

So, typically what happens when we crush a larger particles there are two type; two peaks we

can see in such graph ok. One peak is for the material or its characteristics; the other peak



represents the equipment by which we are crushing that particles that is a characteristic peak

for the equipment.

So, these are the two major peak we can have or dominant peak we can have or let us say the

visible peak we can see ideally when we crush larger size particles, one represents for the

material  and  the  other  represents  as  a  characteristics  for  the  crushing  or  the  grinding

equipment.

So, to sum up these two slides this one and the previous one is that the difference is this is a

cumulative mass fraction of a particular or let us say a given size range. When we take slope

at each and every point of this curve and we plot it like this again with the particle size we get

this  distribution.  So,  the  differential  or  the  derivative  of  this  previous  cumulative  mass

fraction curve is this differential  size frequency distribution curve. So, this is the relation

between the these two graphs.
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So, ok; so we have size distribution curve. Now, as I said we have to have a mean or let us

say a single number like we have seen in the previous two slides; one by median and the

other by mode, we got one number single number to represent that sample. Now, those are

not only the practice there can be several ways to find out a single number to represent the

mixture that consist of wide range of particle size.



For example, mode and various means, the example of mode we have seen. There can be

various  means  like  the  arithmetic  mean  we  simply  do  that  by  averaging.  There  can  be

geometric mean, there can be harmonic mean and etcetera there are several statistical means

are available to find out what would be or what would be the appropriate representation of

that sample by a single number. Now, for a particular or a given size range there can be

different means now we can understand.

So, which one we should consider or how we should choose we will see that in the coming

slides  and  in  the  coming  class  as  well.  That  the  property  under  consideration  actually

influences this choice of this mean and how that happens we will discuss it slowly. 

So,  let  me give you an example  at  this  moment is  that  the property  under  consideration

influence the choice of means; that means, that when which application you are looking for

the mean for that particular sample or the collection of particles. For example, is there is a

flow through such particles that is equivalent to flow through a packed bed of particles.

In that  case which mean you should use let  us says then you can apply Kozeny-Carman

equation, Ergun equation for such applications and there you have to put a equivalent d or the

diameter. So, what would be that equivalent d, what is your consideration, we will see that

slowly. So, before that let me tell you that what are the different types of means that statically

or most popularly are used in such determination.

So, let us say if you have a function p(x) ok, and the average value the mean value is,

p ( x́ )=∫
0

1

¿ ¿¿

So, this mean basically defined by this formula, this is the definition of having an average

value of an function. Now, if this p; I mean, this p(x) is x, then this definition gives you the

formula for arithmetic mean.

Now, here you must recognize that this integral,

∫
0

1

dF=1



because again if I go back to the previous curve you can see that the total mass fraction; the

cumulative mass fraction is 1 it cannot go beyond value 1, so ideally it is 1. So, basically the

average or a mean of this parameter p(x) is determined by this function, where if p(x) is x

then you get arithmetic mean, if p(x) is x square this mean is called quadratic mean, this p ( x́ )

this is the average value. 

p ( x́ )=∫
0

1

p ( x )dF

If p(x) is x cube this definition gives the cubic mean value, if it is log x, it is the geometric

mean and if it is 1 by x it is called the harmonic mean. So, we can understand that there can

be several means for a particular function, this function is nothing but the size distribution

curve that size distribution curve can be represented by a function such as p(x), once we fit

that with the proper value we get a appropriate mean value.
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So, by doing this you should understand that a given size distribution can yield significantly

different  means  ok,  a  particular  curve  can  give  you  different  mean  values  that  are

significantly different values. So, for example, a given; there is a given size distribution, you

found that its arithmetic mean is x1, geometric mean is x2 and the harmonic mean is x3 and

these are totally different value distinctly different values this can happen.



And two  different  size  distribution  can  have  same  arithmetic  mean  or  median  ok.  This

statistical you can understand that when, there are two different size distribution graphs, but

due to the central modal nature of those graphs you can have a similar value of the arithmetic

mean or the median. So, selection of appropriate mean becomes important in both the cases,

both the cases means that for a given size distributions as I told earlier you can have different

means, but which mean to choose. And there are two different size distribution two different

sample, but its arithmetic mean or median coming out to be the same.

So, what it leads to that if you choose a different mean your design and all other subsequence

steps can be wrong or will be wrong and it will create some inappropriate design. So, the

selection of appropriate mean for a particular size distribution is important and to identify that

for different size distributions a particular mean which will be representing differently in both

the cases that is also equivalently or similarly important.

(Refer Slide Time: 16:45)

So, now coming out let us say we look into the mean particle size ok. So, how to calculate

such mean particle size? We have seen a theoretical part now let us see that how really one

can calculate mean particle size from a collection of particles or a sample which has different

size of the particles.

So, let us assume you have unit mass of particle where  xi is the mass fraction of the ith

component or the ith component of the size. So, let us say you have a size 1 particle that has a

mass fraction of xi ok. So,



xi=ni×k ×d i
3×ρ

where k is a constant that depends on the shape of the particle and d cube is basically k d

cube this whole term is basically a represents the volume of that particle, volume is the linear

dimension to the power cube. So, that is represented here by a dimension called d i and k is a

constant that depends on the shape.

So, now you understand for the spherical particle this k value is basically (π /6 ) or square this

for a cube this k value is 1, so it is written for a generic purpose, so number of particle, the

volume and its density. So, this and its density it is not the cube ok that is my mistake here.

So, here; that means, we can write ni is nothing but,

ni=
1
ρk

xi
di
3

 So, this thing, this conversion is basically important in this case. So, from mass fraction to

the number distribution, so number of the particle ith particle, ith means the size 1 particle.

So, similarly for the size 2 particle it will be x2 n2 and equivalent diameter of d i d 2 and this

summation of mass fraction is always equals to 1, which is  ρk  and this summation of this

value that comes from this expression.

∑ xi=1=ρ×k×∑ (nid i
3)

So, now, if  we try to represent the size distribution by a continuous function,  then quite

naturally,

dx=k di
3 ρdn

And,

dx
dn

=ρk d3

and this integral,

∫
0

1

dx=1=ρ k∫ d3dn



which is basically the mass fraction; the summation of mass fraction from 0 to 1 is basically 1

and it is giving the above expression in a continuous mode.
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So, coming to the mean size calculation based on certain criteria, because we can understand

that is mean size can be based on a certain parameter like the volume, like the surface, like

the length we will be discussing this sequentially. So, volume mean diameter if we try to

define for a collection of particles, then we can understand that

d v=
∫
0

1

ddx

∫
0

1

dx

=∫
0

1

d dx

this is the definition where ∫
0

1

dx=1.

So, this definition gives us the volume mean diameter of that sample or the collection of

particles, which if we try to write in finite difference form it is,

d v=
∑ (d i xi)

∑ x i
=∑ (xid i)



where  again,  ∑ xi=1.  So,  it  is  basically  this  expression  which  is  nothing  but  the  mass

fraction of a certain size component multiplied by its diameter.

Similarly mean volume diameter, you have to now look into the adjective that we are putting

mean after a certain word; here it is the volume mean diameter. Now, we are talking about

mean volume diameter, which means let us say we have this d prime v is the mean volume

diameter of that collection of particles and it is a uniform.

Now, since volume is conserved for this; because this mean we are defining based on the

volume. So, the volume is conserved volume should be identical, now by that the definition

becomes,

k d v
' 3∑ ni=∑ (knid i

3
)

k d v
' 3 which is the volume multiplied by the number of particles is basically the summation of

individual component.

So, by doing this we can find out the mean volume diameter as this expression, and when like

in the previous slide we have seen that the relation between n and x. So, if we now replace

this ni with xi which is the number to the mass fraction we can have the expression,

d v
'
=
3√∑

(ni di
3
)

∑ ni
=

3√ ∑ x i

∑ ¿ ¿¿
¿

which is the mean volume diameter as this expression above.
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So similarly, if we see the surface based mean sizes like in the previous slide we have seen

volume based mean sizes, now this is the mean size based on the surface. So, surface mean

diameter or it is also popularly called the Sauter mean diameter by the name of the scientist

Sauter. It is defined as this way, 

d s=
∑ (nidi Si )

∑ (niSi )
=
∑ (nik

' d i
3)

∑ (nik
' d i
2)
=
∑ (nid i

3)

∑ (nid i
2)

where again this ni is the number d i is the diameter of that sample S is the surface area of that

particular ith sample or the ith size particle divided by summation of this parameter.

Now, here also this surface we can write like the volume as a certain constant multiplied by

the linear dimension square or the d i
2. So, by doing that like in the volume we have mentioned

that  it  is  the  linear  dimension  cube,  so  surface  is  linear  dimension  square  and  with  the

constant parameter that changes with the different shape. Here we are designating that as k '

we can have this expression that is one d was there already and S is related with the k ' and d i
2.

So, nik
' di
3 and at the denominator similar expressions, but here it is d i

2.

When we again replace this n with the expression of x we get



d s=
∑ xi

∑
xi
d i

=
1

∑
xi
di

this value which is, so basically again let me go back those who are not getting this point that

this is the expression that we have seen before coming to that expression, so ni and xi.

So, we are now replacing wherever the number and this is the mass fraction. So, this is the

relation  between the mass  the  size  distribution  by number  and size  distribution  by mass

fraction. So, similarly here also when this ni is replaced by the expression of x we get, so here

we get the surface mean diameter or the Sauter mean diameter.
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Here  again  it  is  the  mean  surface  diameter.  So,  here  we  get  like  the  volume  we  have

mentioned if the, so mean surface diameter is designated by d s
' , we can write this expression

that let us say the sample has mean surface diameter of d s
'  and it is uniform throughout the

sample and the surface area is conserved.

So, we can write,

k ' d s
'2∑ ni=∑ (k ' nidi

2
)

for each and every ith size particle and then we can get,



d s
'
=√∑

(nidi
2
)

∑ ni

The above expression from this step, where again if we replace this number by the mass

fraction we get

d s
'
=√∑ ¿ ¿¿ ¿

for the mean size diameter.
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For the length base mean sizes length mean diameter is defined by

d l=
∑ (ni di

2)

∑ (ni di )

Now, length is basically proportional to the linear dimension. So, that is why it is we have

eliminated there is no necessity of expressing that with the another proportionality constant or

the constant value. And it becomes,

d l=
∑
xi
di

∑
xi
di
2



for the mass fraction distribution. So, in all,

d l=
∑ (ni di

2)

∑ (ni di )
=

∑
x i
d i

∑
x i
d i
2

For mean length diameter similar kind of definition we have put that if d l
' is the mean length

diameter of that sample,

d l
'∑ ni=∑ (ni di)

where it is multiplied by the summation of number of ith particle is basically equals to the

total nid i. And we get the mean length diameter,

d l
'
=
∑ (nidi)

∑ ni
=

∑
xi
di
2

∑
xi
di
3

by number distribution and this is the extreme right side this one is the by mass fraction

distribution.
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So, basically what it tells that in the three cases that I have shown is the one is volume based

mean sizes, where we had express that in terms of  xi di which is the mass fraction and the

diameter of the respective mass fraction. Here also, but it is mean volume diameter, so do not

confuse with volume mean diameter and mean volume diameter this results in two different

expression. 

Similarly, surface mean diameter or Sauter mean diameter versus the mean surface diameter

and length mean diameter and mean length diameter. So, these are the 6 variants we have

seen and these are different in expression as well as this can yield different values for a given

size distribution.

So, how the size how this expressions will be used we will be seeing when will look at an

worked out example, what will happen that for a size distribution you will be given with this

xi and the d i values or let us say the ni and the d i values. So, let us say you have 100 numbers

of one micron particle 50 numbers of 200 micron particles, 70 numbers of 30 micron particle,

this kind of tables you will be given. And then you will be asked to calculate that what is the

mean diameter of that based on a certain criteria either it is a length or volume or surface. 

So, we will be seeing that in the coming classes and that is all for now with this I would like

to.

Thank you for your attention.


