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Welcome back to the another class of Fundamentals of Particle and Fluid Solid Processing.

We will continue with our section that we started in the last class that is the Flow through

packed beds and the granular material. So, we concluded that in fact, we have seen that the

laminar flow through a bed of material or the objects and what is the pressure gradient in that

case as well as when there is a turbulent flow, how we can estimate the pressure gradient

across that stack of material having mono sized sphere particularly ok.

So, the question was whether we can have a generic expression that irrespective of the flow

regime or irrespective of the flow region being at laminar or turbulent whether we can use

that expression ok.
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So, after several years of Darcy - Ergun came up with this expression, 
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the famous Ergun equation you already know about this thing, but let me again refresh your

memory by saying that this Ergun equation has two component ok. The first component that
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contributes when the flow is laminar. The pressure drop contribution or the contribution of

this first part to the overall pressure drop is the dominant when there is a flow in laminar

condition through the packed bed of material.

And the other part, 1.75
ρfU
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x
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 becomes dominant or contributes dominantly when the

flow is turbulent. So, he has combined these two parts. It is similar the first part is similar to

the Kozeny - Carman equation, but with a different prefect the factor or the constant value

and the other part is the Burke Plummer.  So, the point here,  you can see that in case of

laminar flow; that means, when this first part is dominant ok.

So,  when  this  first  part  is  dominant,  the  pressure  gradient  increases  linearly  with  the

superficial velocity  U . The  (
−∆P
H ) is proportional to  U  that was the observation that was

mentioned by Darcy and it is completely independent of the fluid density, this part has no

contribution  of  the  ρ f  or  the  fluid  density.  When there  is  a  turbulent  flow,  the  pressure

gradient increases square of the superficial velocity and in this case later part does not contain

the fluid viscosity which means it is independent of the fluid viscosity. 

The point is here we have categorized or this thing is categorized based on either the fluid

density or the fluid phase viscosity. Now you remember a dimensionless number that actually

defines this importance of these two parameter that is the viscosity and the density or the

density and the viscosity; it is nothing, but the Reynolds number. Reynolds number defines

the importance of the inertia force and the viscous force; high Reynolds number inertia is

high, low Reynolds number viscous force is high.

Now, you can relate that that in; that means, in case of laminar flow when we are saying

laminar flow the viscous force dominates. So,  150
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 is basically the viscous force



and  1.75
ρfU
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 contributes in the inertia force. Second part contains  ρf U

2 term and

here we have μU  term. So, which means this famous Ergun equation is having two parts, one

is almost identical with the Kozeny - Carman equation with a different constant value and the

other part is the Burke Plummer equation.

Now these constant values, we will see when we will cover the multiphase cases this constant

actually varies. This 150 and 1.75 are basically the empirically fitted constant values like

because you have seen in the last class that when we mentioned that K 3 depends on the shape

and the surface property of the object and it is numerically close to 5 that comes from a

several experimental values. We call these are the empirically fitted constant values, that you

do thousands of experiments you try to fit those experiments with a best fit curve and doing.

So, you come up with several constant that are the empirical fitted constant values. So, these

are 150 1.75, these are basically such values.

(Refer Slide Time: 06:50)

Now the point is friction factor ok. If you remember the friction factor in Fanning friction

factor  ok,  in  similar  way  or  analogous  to  that  friction  factor,  we  can  define  the  Ergun

equation in terms of the friction factor as well by defining the friction factor as,

f ¿=
(−∆P )
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If  you look at  this  expression,  it  basically  forms that  friction factor  term in the Fanning

friction factor with the inclusion of this voidage parameter. And then if we define that that

Ergun equation is simplified to friction factor expression which is,

f ¿=
150
ℜ

¿ +1.75

 ℜ¿ is the Reynolds number or here the particle Reynolds number.

Now that particle Reynolds number is defined in this way which is,

ℜ
¿
=
xU ρf
μ (1−ε )

By defining the Reynolds number in such a way, it has been observed that the laminar flow

condition prevails if the particle Reynolds number is less than 10 ok; strictly speaking if it is

near about 1 it is fully laminar. The transition region is from 10 to 2000 and fully turbulent

region is when it is more than 2000. So, accordingly this friction factor value also changes

because now you can understand this Ergun equation had two part- one is the viscous force

term, other is the inertia force term. Now the viscous force term becomes dominant in case of

laminar flow, inertia becomes dominant in case of turbulent flow. So, in laminar case the

friction factor would be mostly contributed by this (
150
ℜ

¿ ) ok.
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And in case  of  in  case of  turbulent  the friction  factor  value  is  a  constant  which  is  1.75

eventually this friction factor and the ℜp in a log scale would look like and this way that it

will have a slope of (
150
ℜ

¿ ) and in the turbulent region, it is a constant value. So that means,

that Ergun equation can be used for the complete flow regime, be it laminar or the turbulent

and we will see afterward that automatically one of the part becomes important in either in

laminar or in turbulent cases.

The contribution is more and more in the one of the cases, we will see in when we will solve

some problems related to this. So, this Ergun equation you can use it irrespective of the flow

region and for this is specially mentioned here, it is for the spherical object or the spherical

particles  having a  diameter  of  x ok.  If  the  void  is  known single  phase  flow when it  is

happening you can calculate, it is pressure gradient through a mono sized sphere; stack of

mono sized spheres ok.

(Refer Slide Time: 11:23)

So, what happens in case of non spherical particles? Although while developing this Kozeny

- Carman equation in the last  class;  if  you have remember,  then you understand that we

define the generic values of the hydraulic diameter and etcetera ok.

The point is that for the non spherical objects this Ergun equation as well as the Kozeny-

Carman equations both can be used with the equivalent  diameter  by choice of a suitable

equivalent diameter. Now what does this mean by suitable term or the appropriate one? This



appropriate  one would be here that  would have a  diameter  of  a sphere having the same

surface to volume ratio, because this is what if you remember this development of Kozeny -

Carrmen equation, this is what of was more importance that  SV  term ok, that we converted

the SB which was the surface area per unit volume of the bed to SV  term which was surface

area per unit volume of the particles ok.

So, basically our stress during the development of Kozeny - Carman equations and in fact, in

this Ergun equation is to have importance on the surface area per unit volume, this quantity.

So, if there is a particle of irregular shape or it is non spherical particle, then it is wiser or it is

appropriate to have a equivalent diameter that will have a same surface area to volume ratio

of a spherical object, which means the surface area of particles per unit volume of particles is

what we are looking for and should be given the highest consideration. So, if we use the

surface volume diameter here, now you remember the initial classes when we defined several

types of diameter.

And we solved one problem related to this Ergun equations and we mentioned that that this is

this or during this are a solution of Ergun equations, what could be the appropriate diameter.

There was a mention of that that what would be the appropriate mean diameter that we should

choose while solving Ergun equation of non spherical particles.

Now here is the answer that when solving such cases either be it a Kozeny - Carman equation

or the Ergun equation, it is always it you should put a stress on the surface volume diameter,

which is the xSV   in this case. How do you calculate that you basically equate that surface to

volume ratio of that irregular ship body with the same of a spherical object and you find out it

is diameter and use that diameter in this expression.
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So, the generic  expression for Ergun equation as well  as the Kozeny -  Carman equation

becomes,
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x SV  term. This is the only change that has happened here that is the equivalent surface volume

diameter.

(Refer Slide Time: 15:13)

So, if you have understood this concept, then we move on to one of the problems ok. Now the

problem says that there is water that flows through 3.6 kg of glass particles of density 2590

kg/m3 that forms a packed bed of depth 0.475 m and diameter of 0.0757 m. The variation in

frictional pressure drop across the bed with the change in water flow rate for a range of 200 to

1200 cm3/min is given in this table. We have to show that the flow is laminar where this flow

rate  versus  pressure  drop  data  is  given,  we  have  to  calculate  the  mean  surface  volume

diameter of these particles and we have to calculate the relevant Reynolds number.

So, here the first part is that we have to understand this flow rate versus pressure drop value.

We have water flow rate, we have pressure drop value, which means that there is there are

glass particles we form a packed bed of known depth and then water is flowing through that

packed bed with the way a varying velocity or the flow rate for each constant flow rate, we

have measured the pressure drop across the bed and these are the value that when there was a

steady state with 2 cm3/min 200 cm3/min of flow rate, we had 5.5 mmHg mercury pressure

drop; similarly these are the value. 

So, at first we have to demonstrate that the flow is laminar; so, this is the first part. So, how

do we do that?



(Refer Slide Time: 17:42)

The point is if you remember this expression, the first part of the Ergun equation because you

do not know initially that in which region this operation is happening.

So if we use Ergun equation, the first part consists of 
μU

x sv
2

(1−ε )
2

ε3
 parameter and again if you

remember  this  pressure  drop  was  linearly  varying  with  the  flow  rate  or  the  superficial

velocity here which in other way we can say is the flow rate. The point here now, we have

these two data.  So, at  first we convert  this to the superficial  velocity and the pressure in

Pascal to be in a consistent unit. So, from water flow rate cm3/min, we at first calculate what

is the superficial velocity ok. How do we do that? We have the flow rate Q, we have the cross

sectional area that is the information given in the problem.

So,  from that  we calculate  the  for  each and every  flow rate  we calculate  the superficial

velocity; from mmHg, we convert that to Pa. Then if we plot this U  versus pressure drop and

if it gives a straight line, then it is established that this flow this operation is happening in the

laminar region because this is the point, that this 150
μH

xsv
2

(1−ε )
2

ε3
 part of this Ergun equation

(
−∆P
H ) is linearly varying with the superficial velocity.



(Refer Slide Time: 19:57)

So, we do that, we see that the superficial fluid velocity and the pressure drop. These are the

points  which  we can fit  through a  straight  line  with  a  slope of  1.12×106 Pa. s/m.  That

establishes the flow or the operation is happening in the laminar region. I hope this concept is

clear that if we plot the ∆ P versus U data; the superficial data and if it becomes a linear, then

undoubtedly we can say this operation is happening in laminar region for a single phase case.

And that slope value is nothing, but this 150 multiplied by that this parameter because ∆ P /H

was of this one. So, if ∆ P and U we plot so, it becomes 150
μH

xsv
2

(1−ε )
2

ε3
. So, this parameter is

basically the slope value. 

150
μH

xsv
2

(1−ε )
2

ε3
=1.12×106Pa . s/m

Now if we go back to the problem again,  now it  has been asked that estimate the mean

surface volume diameter of particles ok. So, which means we have to calculate what is x SV ,

here flow is laminar we have got the slope, the slope value is known the slope parameter we

have equated with a known value now. Now here bed height is known, viscosity is known,

the point here is the  ε  or the voidage; this information is directly not given in the problem

statement. There is no mention of the voidage; here the information are given is, that the mass



of the bed is given, the depth is given ok, the diameter is given, the density of the particle is

given and the flow range is given here 200 to 1200 cm3/min.

(Refer Slide Time: 22:47)

So, here then what we get is that mass of the bed is basically equals to the cross sectional area

multiplied by the height and multiplied so, volume multiplied by the density of the particle,

the volume is the cross sectional area multiplied by the height. Now the cross sectional area

for the solid particles is A multiplied by (1−ε ), is not it? Because ε  is the voidage, (1−ε ),  is

what the solid fractions are.

So, in a cross sectional area of A, the solid consideration should be A×H × (1−ε ), the height

of the bed that gives you the volume of the solid particle, multiplied by the ρ p is the mass of

the bed. 

mass of bed=AH (1−ε ) ρp

This mass of the bed is given which is 3.6 kg, H  is given ok, the diameter is given so, which

means you can calculate all other parameter or you can replace the all other parameter and

calculate what is the epsilon.

If we replace the numeric, we get this ε  value of 0.3497 ok. Now if we replace this ε  in this

expression with other known value of viscosity because viscosity value is given here for the

water, we know the viscosity value and this height is also known so, we get the x sv ok. So,



here basically this  ε  is known, height is known; this μ actually is not coming properly here

this is actually the μ so, μ is 0.001 Pa. s. If we replace this value in that slope expression, we

get what is your x sv or which is the mean surface volume diameter of the particles and that

comes out to be 792 μm. Substituting ε=0.3497, H=0.475mand μ=0.001 Pa.s

150
μH

xsv
2

(1−ε )
2

ε3
=1.12×106Pa. s/m

x sv=792μm

The point was the third part what is the relevant Reynolds number ok, this is also to verify

that whether our the assumption of only consideration of the first part was valid or not, but

here there was no assumption. In fact, because we had this data in other problems when we

solved that we assumed that this is the laminar condition and then solved the problem. Here

that point was all the data points were given their experimental results were given. 

So, there is no point of any verification of the Reynolds number, but we had to calculate what

is the Reynolds number. And with the highest velocity from this table; if we calculate the

Reynolds number from the definition of the Reynolds number

ℜ
¿
=
xU ρf
μ (1−ε )

this x considering x now is the 792 μm, U is the superficial velocity, ρ f  of the fluid μ is that

in viscosity of the fluid  (1−ε ) is the 1 minus voidage, we find that it is 5.4 which is well

within the laminar flow range ok.

ℜ
¿
=
xU ρf
μ (1−ε )

=5.4

So, this fit in fact, this feet with a straight line also in other way it is justified that indeed it

should fall in a linear relation. So, the take away message from this whole class today is that

the we have to look for this Reynolds number range and it is then that actually will help us to

understand  that  which  part  will  be  dominant  in  Ergun  equation.  The  Ergun  equation

encompasses both the flow regime that is the laminar and the turbulent flow regime ok; it is

the combination of Kozeny - Carman and the Burke Plummer equation.



It can be also written in form of friction factor

f ¿=
150
ℜ

¿ +1.75

and the friction factor becomes only  
150
ℜ

¿  in case of low Reynolds number that is beyond

below 10 in case of laminar region, that is in case of turbulent region; it is 1.75 or a flat

profile. If you remember this graph then it would be easier this again this is not act to the

scale, but this is the schematic. For the non spherical particle, both these equations like the

Kozeny - Carman, Burke Plummer as well as this overall Ergun equation can be used with

the surface volume in diameter and then a problem we have seen with the surface volume in

diameter that how it is useful. 

So, with this I will stop here and we will come back with the next class and till then I hope

you are enjoying this class. 

And thank you for your attention.


