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I welcome you to this lecture on Flow through Porous Media. We have been discussing

about different mechanisms by which the transport takes place in porous media. Now, we

were going to in this module we are going to discuss about the flow equations. We will

look at this Darcy’s law that we talked about that cause and effect relationship in a bigger

detail. We are going to look at it and also what other ways other than Darcy’s law what

other ways viscous flow can be theorized.

So, that is something which we are heading to. 

(Refer Slide Time: 01:05)

Here in this  section you will  be focusing mostly on Darcy’s law and also further an

equation which is known as Ergun equation.



(Refer Slide Time: 01:16)

If we look at the Cauchy momentum equation in convective form it is written like this.

You must be familiar with Navier stokes equation in fluid mechanics, if not you must

think of this whole exercise as an extension of Newton’s second law.

So, what Newton’s second law said is that force is equal to mass into acceleration, in

case of fluid mechanics mass into acceleration can be in different forms. Acceleration

can be that you put some liquid in a tank and then you halt that liquid using a truck. So,

there also that liquid can accelerate depending on the acceleration of the truck ok. 

On the other hand when a fluid flows through a pipe or fluid flows through any conduit

that time one has acceleration, but that acceleration is not simply D u D t, where u is the

velocity it is not simple derivative of velocity instead we talk about the something called

a substantial derivative which is capital D u capital D t.

So,  this  substantial  derivative  these  gives  an acceleration  which  is  a  combination  of

convective  acceleration,  convective  acceleration  plus  local  acceleration.  So,  this

convective acceleration and local acceleration we are familiar with these del u del t term

as acceleration, but that we are calling local acceleration; Why, we have to get into this

convective flux local acceleration? 

Because these velocity the u that we are talking about, u is not velocity of a particle had

it been a Lagrangian framework; that means, had it been a velocity of a particle u is a



velocity of a particle we could have simply we could have taken a derivative of it with

respect to time and we could have called this acceleration, as we have studied in particle

mechanics.

But here in this case u is not velocity of a single particle; u is the velocity field. What that

means, is flow is taking place here and I picked up a box attic or some coordinate I

picked up a box. And in that box in that location let us say x y and z location, in there are

multiple  there  are  several  number  of  particles  that  are  entering  into  the  box several

particles leaving the box.

If I look at the average velocity of all these particles at that particular location that is the

u that we are talking about here. So, this is basically a velocity field which is a function

of space and time, space means this is the xyz coordinate where this box I have located

and t is the time at which I am doing this averaging.

So, this is a velocity field. So, when we for try to find out what is the acceleration in this

velocity  field  we  need  to  take  a  substantial  derivative.  So,  this  is  the  mass  into

acceleration term and on the right-hand side we have the force term, and the force is

basically force per area.

So, we have now; so we have from the force term this rho g, you remember h rho g was a

hydrostatic head, h rho g is a pressure right. So, I have h rho g used to be the pressure.

So, this is rho g term is giving me so, pressure so, when it comes to force it is h into rho

g into A. So, h into A gives me the volume right, h into A into rho into g h into a is the

volume into density is mass, mass into g is the acceleration due to gravity. So, this is the

force. 

So, rho g is basically; rho g is basically the force per volume. So, this is the force per

volume.  So,  you  are  similarly  minus  grad  of  P,  similarly  the  shear  component  is

contributing  here.  So,  this  is  basically  the  Newton’s  second  law  applied  to  fluid

mechanics in case you are not having exposure to this Navier stokes equation. And if you

have then you must reconcile this quickly I mean this equation you must have studied.

Now, for steady creeping incompressible flow, steady means these del u D u D t is the

convective acceleration plus local acceleration. Local acceleration was basically del u del

t and the convective acceleration is basically u del u del x plus there are a few other



terms. So, now this del u del t time derivative is 0. So, steady means this part is gone.

Creeping; creeping means convective acceleration part is gone and then incompressible;

that means, rho is constant incompressible means density is constant.

So, and D u D t is already equal to 0 so, you are left with this equation. This is basically

the  Navier  stokes  equation  with  this  convective  term  D  u  with  these  substantial

derivative is equal to 0. So, under these assumptions this is the equation for this is the

momentum balance equation. So, now, you can see here we put a subscript i so, i gives

the; that i is as an index it gives me the direction it could be x y and z.

So, for example, a del i P; that means, if we are talking about x direction then it would be

u subscript x this is rho g x direction gravity this generally does not work gravity works

with y direction or gravity works in z direction, if you have x y and z three directions and

this would be del p del x. Similarly, when you are talking about the y direction then it be

u i. So, that should be mu del square u del y square plus rho gy, if y direction gravity in

the direction that you have chosen as y if gravity does not apply to that direction then this

term will be automatically equal to 0 and minus del P del y.

So, you have three equations; so, these three equations we had put here in one notation

with these index i ok. So, in one case it is del P del x in other case it is del P del y in

other case it is del P del z. Here it is 0 0, and if z direction is the gravity or maybe z is

opposite to gravity lot of times you work with z which is going up. So, if it is opposite to

gravity then you would be minus g, and here in this term this term becomes mu del

square u del x square in the second case it becomes mu del square u del y square and

third case it.

So, these are three different equations right hand side is zero and left-hand side is taking

those forms. So, three different equations will generate. So, that is the purpose of putting

a subscript i. So, here mu is the viscosity u i is the velocity in ith direction, g i is the

gravity component in ith direction and P is the pressure we have already talked about it.

And the definition of tau is given here. Now, here another assumption one needs to take

if one wants to arrive at Darcy’s law, one assumption is this and density was treated as

constant.

So,  these  are  the  assumptions  by  which  you  are  reaching  their;  steady,  creeping,

incompressible flow. So, this is one thing and second thing is you are assuming that the



viscous force is as linear with velocity. Actually the exercise that I am doing is these are

mostly  in  a  approximate  and  dimensional  sense,  I  mean  it  has  to  be  done  more

rigorously.

But I just wanted to point out that if one considers viscous force as linear with velocity,

viscous force viscous force; that means, A into minus mu del u del z or tell you what is

the del u del x mu into del u del x; mu into del u del x if we if we assume this to be linear

with velocity. When would you assume del u del x to be linear with velocity think of it?

We have to let us say we have two parallel plates, one plate is fixed and the other plate is

moving at a velocity let us say u.

So, in between these layers you will find that this here the velocity is 0, here the velocity

is little  bit,  little bit further, little bit further and here the velocity is all  the way the

velocity u. So, the velocity profile will take a shape like this. Now this is and this is

supposed to be non-linear, but if this gap is small one can and some other putting some

other assumptions one can see that del u del; let us say I have this is the direction of y or

let us say this is the direction of x.

So, del u del x the velocity gradient can be written as let us say this distance between two

plates is h is U by h. So, in this case one can say that this del u del x the gradient is equal

to u by h one can make an assumption. Similarly, if one can assume here the viscous

force as linear with velocity. So, in that case one can go here and place this instead of mu

del square u del x square which is del x of mu del u del x, these del u del x can be written

as constant multiplied by U since its linear with velocity.

So, one ends up with these as proportional to U if you follow this logic ok, and then this

proportionality constant if someone writes as minus mu by k into phi then one ends up

with truly the Darcy’s law. Because rho g i let us say we are ignoring if we are having a

flow in horizontal direction if. So, this would be ignored and this term would be simply

minus mu by k u into phi this term and this goes to the right-hand side these becomes del

p del x.

So, then del p del x is equal to minus mu by k u into phi. So, then u would be then u if

you take everything to the right-hand side u end up with the Darcy’s law. So, this Darcy’s

law I mean though we placed it as a cause and effect relationship, but if somebody wants



to you know derive it from the basic Newton’s second law. So, one can do that with the

assumptions that I mentioned just now.

(Refer Slide Time: 14:08)

There are other variations to these Darcy’s law possible, one such variation is mentioned

here and here you can see del p del x is not just a function of velocity rather it is also

there is a component given as velocity square ok.

So, this is basically this q is equal to Darcy velocity here which is flow rate per unit area

per time. The second term on the right hand side which is nu because this two they come

they constitute the Darcy’s law, but this term is nu the second term on the right hand side

arises due to inertia, where k 1 is considered inertial permeability.

This  form of  equation  becomes  relevant  only  at  high  flow rate  because  inertia  will

dominate only at high flow rate. Such as gas flow in a gas production way gas production

will means near the wellbore you will have much higher velocity you have already seen

this right; you have already seen that the velocity if I put v r as a function of r and this is

proportional to 1 by r.

So, naturally near the wellbore the velocity is much higher and so if it is a gas flow even

it is higher. So, or flow through a fracture, flow through a fracture means fracture is a

porous medium they can have some channels I mean porous media if there is a fracture

there is a crack through that the flow will take place at a much higher rate. We will



discuss about  how the permeability  of a fracture can be obtained from again Navier

stokes equation. But this fracture can be treated I mean one can have a permeability and

one can treat these just as equivalent to Darcy’s law.

Just using the Darcy’s law one can treat them and that similarity of that treatment with

flow  between  two  parallel  plates  as  we  have  done  in  fluid  mechanics  that  can  be

established.  In  fact,  there  is  a  very famous cubic law; cubic  law for  flow through a

fracture which relates these two flow between two parallel  plates and flow through a

fracture whereby they have shown that the fracture permeability k we put a subscript f.

So,  fracture  permeability  can  be  written  as  b  square  by  12,  where  b  is  the  distance

between these parallel plates. So, this is something which we can touch upon later. So,

this is; so these are so, when it comes to flow through a fracture this kind this type of

equation  may  be  may  be  valid.  Now,  this  equation  is  usually  not  needed,  frankly

speaking  this  equation  is  usually  not  needed  for  flow in  the  middle  of  a  sandstone

reservoir.

So, when you are working with a working with a regular flow in the reservoir this type of

equation is not needed it is a very special treatment. But just for information that such

type are we accounting inertial terms and through an inertial permeability that exists.

(Refer Slide Time: 18:00)



Now, here  comes  the  other  way  of  doing  things.  We have  been  talking  about  flow

through porous medium through Darcy’s law and all  these  things.  So,  now suppose

someone goes to try to relate more to the concepts of fluid mechanics flow through a

channel, if someone wants to wants to relate the flow through porous media with flow

through channels. So, the most obvious thing they will do is they will immediately go to

Reynolds number. Flow through a pipe; flow through a channel it is typically defined at

the  pressure  drop;  pressure  drop  for  flow  through  a  channel  is  given  by  the  most

fundamental dimensionless number in this context is Reynolds number. You all are aware

of this, must be aware of this is the most basic thing in fluid mechanics.

When you have a pipe of diameter d and fluid is flowing at a average velocity v and the

density of the fluid is rho, viscosity of the fluid is mu then a Reynolds number is given

by d v rho by mu this is what is the definition of a Reynolds number. So, Reynolds

number  defines  what  in  a  pipe,  generally  Reynolds  number  if  it  is  less  than  certain

threshold number let us say 2100 or so then one considers the flow to be laminar. In fact,

there  is  a  classical  example  of  this  scientist  Reynolds,  what  he  has  done is;  he  has

performed an experiment where he introduced some color in the flowing in the flow of

water in a pipe.

And what he found is that as he continue to increase the velocity he found initially it was

just; initially it was just a line it was just a line wherever he introduced the color it was

just  a  line.  Then  as  he  continued  to  increase  the  velocity  he  found that  this  line  is

becoming wavy and then if it at a very high velocity he found that this line is basically

churning  like  this.  So,  he  put  this;  so,  put  some  numbers  he  assigned  that  this

dimensionless number when it crossed when it crosses certain threshold then this type of

churning starts getting there.

So, these number the higher the threshold number which if Reynolds number is beyond

that threshold value that is considered the turbulence. And if it is less than the threshold

value it is considered laminar, laminar means one layer sliding against the other. That

means, we this is one layer the other layer is sliding, the other layer is sliding one is

sliding against  the other  whereas,  in case of  turbulent  there are  ad packets  which is

moving randomly inside the conduit.



So, now, this Reynolds number what they did is now related this pressure drop delta P

now what they did is they related this pressure drop delta P as a function of Reynolds

number. So, not only it is not just Reynolds number so, there would be other parameters

also. So, this; so it is how; what would be the dependence our pressure drop on Reynolds

number.

(Refer Slide Time: 22:27)

So, rather I should put this as delta P how it depends on Reynolds number. So, if one

wants to go to that logic there in fact, the framework that has been developed there is by

the use of a term called friction factor. Friction factor is a term which is that when a fluid

flows through these pipe there would be frictional loss. In fact, that is why if we have a

cross country pipeline, we have to put some pumps in between over regular intervals so

that pressure can be maintained.

So, where is pressure going because pressure is getting lost pressure is lost due to what it

is  lost  due to  frictional  drop. So, to  overcome the friction  one has  to  put additional

pumping effect. So, what is this frictional loss? So, if this frictional loss is causing this

delta P is arising due to the frictional loss. So, this frictional loss the one has equated this

frictional loss by a term called friction factor.

 The friction factor is so called a factor suppose a fluid is flowing it has certain kinetic

head; kinetic head means it has certain kinetic energy of if you look at half mv square is

a kinetic energy. So, per unit volume if we look at it would be half rho u square. So, then



you; so out of this kinetic energy which fraction is lost due to the friction. So, friction

factor is one such indication, one such parameter that defines how much is getting how

much of energy is getting lost due to friction.

So, this friction factor and now this delta p treating this delta P as a function of this

friction factor; now, naturally this friction factor will depend on whether you are flowing

too fast or whether you are flowing too slow right.

So, if you are flowing too fast then these there are ads, the ads are there would be there

would be lot of cross movements and that will contribute to pressure drop in a different

way, as against when the when the velocity is lower the treatment would be would be

different. So, naturally this friction factor will be a function of; friction factor would be a

function of this Reynolds number when Reynolds number is high then we expect the

friction  factor  to  be low. Whereas,  when Reynolds number is  low the friction factor

would be high.

So, this is a treatment that is already existing in fluid mechanics for flow through a pipe.

So, what we would like to do at this point is we have to define somehow these Reynolds

number for porous media. The objective is that if we can define these Reynolds number

for porous media, then if we can define the Reynolds number for porous media then we

can come up with some kind of friction factor for porous media. Then if we can find out

a  friction  factor  then  we can  come up with  an  equation  that  will  relate  delta  P the

pressure drop with the Reynolds number through this friction factor term.

So, that is something which we are interested in, that could be an alternative treatment

and that would be true if we want to follow what is exactly followed in fluid mechanics

for a flow through a pipe. We can follow the same thing for flow through a porous media

and the outcome of these is, there are three equations possible Blake Plummer, Kozeny

carman equation and a combination of these which is known as Ergun equation.

So, these equations are arising from this idea that we exactly the way fluid mechanics is

handled the Reynolds number, friction factor and then corresponding pressure drop. So,

that same thing will be applied for porous media.

Now when you are going to draw when; we are going to apply this Reynolds number for

when we are going to find out the Reynolds number for porous media the first problem



would be that for a pipe we know the diameter it has a fixed diameter. But when it comes

to a porous media it has flow is taking place through nook and cranny of this you know

tortuous it is forming a tortuous pathway or not traveling like this. So, then how would

you find out what is the diameter, here it is straightforward I have the overall diameter.

And of course, if I take the overall diameter of the porous media that does not make

sense because someone will have higher porosity someone will have lower porosity so

that will also contribute to the Reynolds number.

So, where to start in this regard there is a concept called hydraulic diameter. Hydraulic

diameter lot of times in civil engineering and in other applications people do not, say

where we do not have a circular cross section. If you have a circular cross section, you

can work with that d and you can find out the corresponding Reynolds number using that

d. If one does not have a circular cross section say let us say they have a square cross

section, it could very well be the water is flowing through a square the some conduit of

square cross section.

So, in that case what would be; how do you calculate the Reynolds number? In that case

what essentially is done, is that hydraulic diameter or it is so called equivalent diameter

one  finds  out  and  that  equivalent  diameter  is  four  into  weighted  area  by  weighted

perimeter. So, weighted area by weighted perimeter so, this is the concept of hydraulic

diameter  that is invoked in this  case for example,  in case of a square weighted area

would be these, the area that is weighted when as the fluid flows the weighting is taking

place by the fluid.

So, weighted area is a into a so, weighted area is a square and weighted perimeter this

would be the perimeter. So, perimeter is 4 a. So, it would be 4 into 4 a sorry, a square

weighted area by weighted perimeter 4 a so, this is equal to a. So, hydraulic diameter in

this case would be 4 into a. On the other hand if I have a case where I have a open drain

so, the upper part is open, it is just a drain with three sides. So, in that case it will not be

the area would be then weighted area would be a square.

But weighted perimeter will not be 4 a, the weighted perimeter would be 3 a. So, then it

will not be a it would be 4 by 3 a. So, that would be the hydraulic there 4 by 3 a would be

the hydraulic diameter. So, we have to apply these concepts; so, you may brush up; so, I



am going to close this discussion now and when I continue in the next lecture the same

subject.

Before we start that I suggest you brush up your concepts of hydraulic diameter and for

various  geometries  how  hydraulic  diameter  is  computed.  Because  these  hydraulic

diameter will be used now to find out the Reynolds number; Reynolds number will be

expressed in terms of hydraulic diameter in this case. Ok, that is all I have for this lecture

module.

Thank you.


