
Heat Transfer
Prof. Sunando Dasgupta

Department of Chemical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 08
Heat Source Systems

In the last tutorial problem, we have seen how the concept of critical insulation thickness

can  give  rise  to  interesting  situations.  Today,  we  are  going  to  move  to  something

different; we are going to analyze systems in which we are going to have conduction in

the solid and maybe conduction and convection both present at the solid fluid boundary.

But most importantly these cases in which some amount of heat is being generated in the

control volume.

So, one obvious example of that could be the joule heating, when current passes through

a conductor, we all know that some amount of heat is generated. So, how do we find

what is going to be the temperature profile? How would it look like and what are the

other additional observations that one can make and for those critic situations including

the relevant boundary conditions.

So, we are first going to start with the planar system in which a plate of thickness twice L

is taken to be the control volume. The cross sectional of area of that is will be let us some

constant A. So, the volume of the of this plane element is going to be L times A and will

have the coordinates the origin of the coordinate system would be at the mid plane. So,

this is my x equal 0 is going to be at the mid plane as you can see in this figure.
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So, this is my x equal 0 which is at the mid plane of wall whose thickness is twice L and

it has this area which is equal to A. So, the volume of that would simply then be equals to

twice L times A and this is a mid plane. So, you would to like to see how the temperature

would  change  when we have  some amount  of  heat  generation.  The amount  of  heat

generation is simply the joule heating.

So, it is I square R e. This is the amount of heat produced in watts, but if you remember

in the heat diffusion equation, the q dot is always heat generated per unit volume. So, the

q dot to be used in the conduction equation would simplify be I square R e by v; where, v

is the volume of the system.

And v it is at steady state, we would analyze this only for steady state and if it is steady

state, the entire right hand side of the equation would be 0 and T is a function of x only.

So, T is not a function of y or of z. So, T is a function of x only. So, if that is the case,

then the heat diffusion equation would simply be simplified as d 2 T d x square plus q

dot by k and since its steady state, it is going to be equal to 0.

So, this would be my governing equation which would have to be solved with the help of

appropriate boundary conditions. So, let us say the boundary conditions are such that T at

minus L that is at this plane is equal to T surface 1 and T at plus which is at plus L which

is at this point at this plane would be equals T s 2.



So, these are the two boundary conditions. So, you can integrate this equation; it is a

simple  equation  to  integrate  and  you would  be  able  to  obtain  using  these  boundary

conditions, the final form of the equation, final form of the heat diffusion equation; I am

not  deriving  all  the  steps,  you can  simply  integrate  this  equation,  use  the  boundary

conditions, find out what are the what are the integration constants.

When you when you when you do this and your T as a function of x would simply be q

dot L square by twice k 1 minus x square by L square plus T s 2 minus T s 1 by 2 times x

by L plus T s 1 plus T s 2 by 2. I leave this for you to do this exercise of converting the

governing  equation  governing  differential  equation  with  the  help  of  these  boundary

conditions to the final form of this. 

So, heat flux if this is the temperature profile inside the solid between minus L to plus L;

then, the heat flux at any point can simply be obtained by finding out what is d T d x and

multiply it with k by invoking Fourier’s law. If it is so that T s 1 so, if T s 1 is equal to T

s 2 and let us call it as T s; if that is the case, then what you see is that the temperature

distribution would be symmetric, would be symmetric at x equal to 0 and the temperature

distribution would simply be as T x is q dot L square by 2 k 1 minus x square by L square

plus T s.

So, if the if the two temperatures at the two sides are kept constant and equivalent if the

two  temperatures  are  equal;  then,  the  temperature  would  simply  the  temperature

distribution  would simply look like this  and you can see its  going to  be a parabolic

distribution and for this special case where they are equal, this is what the profile would

look like ok. So, at this plane the temperature as you can see is going to be maximum

and heat is generated inside the system.

So, you have a q dot which is the heat generation per unit volume and this is how the

temperature profile would look like where this, the two temperatures are T s on both

sides of the wall. So, one can also. So, this is I think this is absolute thick layer that when

the two temperatures are equal you going to get a parabolic distribution that is going to

be symmetric at x equals 0 plane.

So,  we can  extend  this  a  bit  further  to  find  out  what  is  going to  be  the  maximum

temperature and from the profile that I have drawn for the temperature you would, you

would you can clearly identify that x equals 0 is going to be the mid plane is going to be



the  plane  of  maximum  temperature  and  you  can  obtain  the  expression  for  this

temperature by simply putting x equal to 0 in the equation.

There is one more part to it since the temperature is maximum at x equals 0, dt dx at that

point would be 0. So, dt dx at x equals 0 would be 0 which simply tells you that for all

for all practical purposes the mid plane acts as an adiabatic plane.

In physical terms if this is a mid plane, then no heat can cross the mid plane. It is some

sort of a peak of the temperature and you have valleys on both sides, the heat flows in the

direction starting at the mid plane and nothing crosses the mid plane. So, the mid plane

can be treated can be can be called as an adiabatic surface. So, let us see how it would

look like.

So, once you have the expression for the temperature in here, the maximum temperature.
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The maximum temperature would simply be would takes place at  x equal 0 and this

should have T naught which is a maximum temperature at x equal 0 is q dot L square by

2 k plus T s. And the temperature distribution can also be temperature distribution can

also be expressed as in terms of a dimensionless temperature, T x minus T 0 by T s minus

T 0 is equals x by L whole square.

So, an as I said the dt dx at x equals 0. Since, this is 0 the mid plane is an adiabatic

surface.  So,  this  is  one  part  of  the  problem  and  let  us  there  are  there  are  certain



modifications,  we can you can suggest to this  governing equation which is I write it

again as d 2 T d x square plus q dot by k is equal to 0.

Let us say that you have x equals, it is this is the surface and at one point, one side of it is

insulated ok. The other is maintained at a fixed temperature. Let us call this as T s. So,

this  is  the  plane  at  which  it  is  kept  insulated  and  this  is  the  plane  at  which  the

temperature is maintained at a constant value.

So, how would the profile look like? And we can see that what I have drawn in this

figure is simply the previous figure; if you look at the previous figure, I have only drawn

half of it. And since, it is an adiabatic surface dt dx is 0 in this case. So, this is how the

profile would look like.

So, this is the case. So, if this is my in order to bring parity between what I have done

before  and this  one.  So,  this  is  at  x  equals  0  and at  x  equals  L.  So,  the  profile  of

temperature would probably look something like this. So, this is the same when you

compare with this part.

So,  this  is  an inverted parabola and this  is  half  of the parabola,  where the boundary

condition at this point would simply be d T d x is equal to 0. So, that is the case when

you have when you have the one side of it is insulated. So, you are going to get distribute

where you are going to get a parabolic distribution. So, it is half parabola at this location.

So, in some case, so this is another situation. So, in some cases, it is it would be shown it

would be known that T s is unknown, but T infinity is known. So, what I mean by that is

this is the same surface, where this is x equals L and what you would have here is this is

my x equals 0 and this is at minus L.

Now, on this surface this is the temperature T s; T s is known, but T infinity it is in

contact with a fluid whose temperature at a point far from the wall is known. So, how

would the temperature, how would the how do you express T s in terms of T infinity and

then, solve the equation such that the temperature profile inside this can be obtained not

in terms of T s, but in terms of T infinity.

So, in order to that only thing that you change the governing equation will still be the

same. The only thing that will change is I am going to take this as my control surface and



whatever heat that comes to the control surface by conduction must be taken out by

convection.

So, this is the condition which is going to be maintained at x equals L. So, at x equals L,

the conductive heat flow upto the surface d T d x at x equals L must be equal to the heat

that is lost from the surface to the surrounding fluid by convection and using Newton’s

law of Newton’s law of cooling this heat flux is simply going to be T s minus T infinity.

So, what I have here is an nothing new and simply using this as the control surface and

equating conduction and convection and I am writing Newton’s law on one side which

takes  care  of  the  solid  side  of  the  interface  and  Newton’s  law,  Fourier’s  law  and

Newton’s  law  which  is  for  convection  which  is  which  is  on  the  liquid  side  of  the

interface  equating these two and knowing that  T x as we have done in  the previous

problem. T x is q dot L square by twice k times 1 minus x square by L square plus T s,

this was the temperature profile.
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And from the temperature profile, we also understand that we also know that d T d x is

equal to minus q dot x by k. So, minus k d T d x at x equals to L is equal to q dot by L is

equal to h times T s minus T infinity.

So, one more time what I have done is from the temperature profile that was obtained in

the previous part, I have I have calculated what is d T d x. I have multiplied d T d x with



minus k. So, minus k d T d x is the heat which is coming to the surface which is equal to

the heat that is converted out which is which is this is the heat flux which is converted

out which by Newton’s law of cooling which be would be a h into T s minus T infinity.

Now, of all the heat generated inside the plane wall, half of it is going to travel in this

direction; the other half is going to travel in the reverse direction. So, if the two sides, if

the boundary conditions at two sides are maintained identical. So, half the heat which is

generated in this must be equal to q dot times L. So, the heat generated would be total

heat generated with q dot times L times area.

So, that is half of the heat generated in the entire wall which travels in this direction. So,

q dot times L is; so, this is the heat generated per unit volume multiplied by L. So, this is

simply the flux. So, by equating conductive heat flux with the convective heat flux and

the amount of heat generation, I can write this expression for this expression. So, what

this simply says that T s is going to be T infinity plus q dot times L by h.

So, simple problem of heat generation inside the plane wall has given as the, we can

make the following observations. If the two end temperatures, two temperatures of the

two sides are identical; then we are going to have as parabolic distribution, symmetric

parabola, symmetric inverted parabola in which describes the temperature distribution.

At the mid plane, since d T d x is 0 that can be that it can be said that the mid plane is an

adiabatic surface. There are you can make one of the surfaces of the plane wall, one of

the surfaces you can make it  perfectly  insulated.  The moment  you make it  perfectly

insulated, the relevant boundary condition at that condition would be d T d x equal to 0

and when you look at that system, it is simply the half of the plane wall that we have

considered previously.

So, in half of the plane wall, d T d x was 0 at x equals 0. In the case when one side is

perfectly insulated, d T d x is 0 at x equals 0. So, the case of the temperature distribution

for  the  wall  one  side  of  which  is  insulated  would  look  like  an  half  of  an  inverted

parabola.

And then, we have also seen that the temperature of the surface may not be known, but

the temperature of the fluid which is contact with the surface is known. So, by the use of



equality of conductive heat flux and convective heat flux at the solid fluid interface, I can

express the temperature of the solid in terms of the temperature of the fluid.

So, that known temperature can then be substituted into the expression for temperature

which contain T s. So, T s can then be substituted by use of the concept of equality of

conduction and convection and through the use of T infinity instead of T s; known T

infinity instead of T s. So, that that is that is the more or less case for the plane wall.

Now, let us see how it would look like if you have a cylindrical wall if you consider a

cylindrical wall or a cylindrical surface, cylindrical volume.

So we, looking at the case heat source systems.
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And the heat source system that we are going to do is cylinder with a heat source and

whenever I talk about this heat source for this problem as well as for the case of plane

wall,  these  heat  sources  are  uniformly  distributed.  So,  all  these  cases  are  uniformly

distributed. So, this is a simple case of let us say through an weir some current is flowing

and you are going to generate some amount of heat which is going to be simply I square

R and this I square R is a heat generated divided by the volume would be d q dot.

So, the heat diffusion equation for a cylindrical  system and its  steady state  and will

assume that temperature is a function of r only. Temperature is not functions of theta as

well  as  functions  of  z.  So,  there  is  no  actual  temperature  distribution,  there  is  no



temperature distribution with respect to theta, but the temperature is only a function of r.

So, it is a one dimensional steady state conduction in a cylindrical system with a heat

source. So, that is what we are going to we are going to analyze. So, the heat diffusion

equation for a cylindrical system undergoing one dimensional steady state conduction is

1 by r d r of r d T d r plus q dot, the heat generation per unit volume by k is equal to 0.

All these equations would be provided to you.

So, you do not need to memorize any of these equations, but you should at least know

how to how to cancel out to the terms which are not relevant for a specific case. So,

given the heat diffusion equation for cylindrical and spherical or spherical systems you

should be able to use your understanding of the problem to get rid of the terms which are

not relevant in a in a specific situation.

So, is its in one dimensional steady state conduction with heat generation.  So, I only

have T as a function of r. So, all the T, all the variation in T with respect to theta and with

respective z, those terms are neglected and I am going to keep q dot by k in there and the

right  hand side of  the  heat  diffusion equation  which takes  into account  the transient

effects that term can also be neglected.

So, I have a compact form in which the one of the term represents variation of T with r

and  the  second term represents  the  heat  generation  in  the  system.  So,  I  am exactly

solving the same problem as in the case of a plane wall, but this time the geometry is

different. So, that is why the form of the governing equation is different. The boundary

conditions will always remain the same. So, let us see how this would look like when we

solve this equation.

So, what you get from here is d T d r or other r d T d r is minus q dot by twice k r square

plus c 1. Then, T of r once you integrate, once again minus q dot by 2 k r square plus c 1

l n r plus c 2 ok. So, the form of this equation essentially gives you one of the boundary

conditions. This equation is valid from 0 less than equals r to R; where, capital r is the

radius of this wire and this entire governing equation is valid from 0 to capital r both

points inclusive.

Since, your temperature cannot be indeterminate at r equal 0 which essential intensive

that c 1 has to be equal to 0. So, that is obvious because since T r is finite has to be finite

at r equal 0. So, in order for T r to be finite at r equal 0; c 1 will obviously, has to be



equal to 0. So, your T r should be minus q dot by twice k sorry, this is 4 k this should be

4 k, q naught by 4 k times r square plus c 2.

Now, what is the second boundary condition? So, this is BC, boundary condition 1 and

boundary  condition  2,  let  us  assume  that  T  at  small  r  equals  capital  R  is  the  wall

temperature of the wall which is known to us. If the wall  temperature of the wire is

known to r known to us which is at r equals R. Then, through the use of this through the

use of this boundary condition one would be able to find out. 
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That T at R is T w which is equal to minus q dot R square by 4 k plus c 2 which would

give rise to c 2 equals T w plus q dot R square by 4 k. So, when you put this back in this

equation, what you get is T minus T w is q dot by 4 k R square minus r square or you can

take R square out of this which is q dot R square by 4 k 1 minus r by R whole square.

You can also express it in dimensionless form and the dimensionless form of this would

be T minus T w by T 0 which is a temperature of the central line minus T w is 1 minus r

by R whole square.

So,  this  would  be  the  dimensionless  form of  the  temperature  profile  and this  is  the

dimensional form of the temperature profile. So, in here T 0 as I said is the centerline

temperature that is this is at T at r equal 0 which would be q dot R square by 4 k plus T

w. So, this is the central line temperature.



Now, there is certain similarity to of this equation or this equation with some of the some

of the things that we have done in fluid mechanics. So, let us think of a fluid mechanics

problem in which you have a tube through which a liquid is made to flow either due to

gravity or due to gravity plus pressure difference imposed on the system.

Now, if you remember your fluid mechanics, this is what the velocity profile would look

like. The velocity due to no slip condition would be 0 at the walls; whereas, it is going to

be maximum at r equal 0 ok. So, the profile in that case would exactly look something

like this, where if you if you if you I would I would I would request you to go back and

see what is the velocity profile in such case and there you would see that the that the

velocity profile is velocity maximum multiplied by 1 minus r by capital R whole square.

So, it  is  a parabolic  distribution  of velocity;  where,  v max is  the maximum velocity

which happens at r equals 0. So, when you think of the heat transfer, conductive heat

transfer in a cylindrical system with heat generation, there also see that the temperature

distribution can be expressed in parabolic form with something in front of 1 minus r by

capital R whole square which if you look at the expression of the maximum temperature.

So, that is similar to maximum temperature.

So,  fundamentally  in  terms  of  the  governing  equation,  in  terms  of  the  boundary

conditions the similarity between heat and momentum transfer they are apparent. The

similarities  are obviously there.  The same type of distribution,  it  is a parabolic  form

parabolic form of temperature distribution and the maximum lies at r equals 0 (Refer

Time: 29:26) velocity or (Refer Time: 29:28) temperature. So, r equals 0 for the case of

cylindrical system is the adiabatic surface at which your d T d r would be 0 and which is

which will tell you what is the maximum temperature.

In the same way we have done before if this T w, the temperature of the surface is not

known to us; then but the temperature of the adjoining fluid which is known to us; then, I

can use again conduction convection equality at small r equals capital R and relate T w

with T infinity. So, what is a how do I relate that? At small r equals capital R, the amount

of heat which reaches this point, which reaches at small r equals capital R must be bi

conduction. Since, I am talking about conductive heat transfer in this case and on the

other side of the interface,  it  is  going to be taken up by convection.  So, if  I  have a

situation  in  which  this  is  the  this  is  the  surface  all  the  heat  that  are  coming  in  by



conduction, the temperature of this point is T w and the temperature some point here is T

infinity.

So, minus k times A area would be twice pi R times L; where, L is the length of it times d

T d r at r equals capital R must be equal to h times a and the area would simply again be

twice by R times L into T of the surface minus T infinity. 

So, this is the way through which one can obtain the unknown T w in terms of the known

T infinity. So, exactly the same way that we have done for the case of plane wall, the

temperature of the temporary unknown temperature of the surface of the (Refer Time:

31:52) surface can be replaced by the known temperature of the fluid surrounding it.

So, what if I we have done so far, let me conclude. We have analyzed the systems where

heat generation is possible, heat generation is taking place for a cylindrical system and

for a planar system and we have seen that the plane of symmetry is x equals 0 at for the

case of plane walls and the line the central line at small r equals 0 that is going to be, that

is going to be the point where the heat where the temperature is going to be maximum.

And we know also know that how to relate the temperature of the wall or temperature of

the surface to the temperature of the surrounding fluid through the use of Newton’s law

of  cooling  and  Fourier’s  law  of  conduction  taking  that  as  the  control  surface  and

importantly, the profile in all cases will be parabolic.

And in the next class is going to be tutorial  one in which we are going to solve the

problem which will have a plane wall with heat generation and sand (Refer Time: 33:02)

and this, another wall of a different materials being adjacent to it and we are going to

have  a  fluid  with  the  surrounding  fluid.  So,  you  have  material  1,  which  has  heat

generation; material 2 which does not have a heat generation and then, on the other side

of material 2, I have convection.

So once we solve this problem, I think all the concepts, all the special characteristics of

the temperature distribution that we have discussed so far will be more clear to you. So,

the next class is going to be tutorial one.


