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Turbulent External Flow

Previous class we were discussing about the concept of eddies and, how eddies transport

additional momentum and heat in turbulent flow? So, whenever there is turbulent flow

the small packets of fluids, otherwise known as eddies they automatically form in the

moving fluid.

These  eddies  transport  from  one  point  to  the  other  carrying  with  them  additional

momentum and energy. So, they are the region why we expect we encounter more heat

transfer, higher values of heat transfer, and momentum transfer in turbulent flow. We

have  also  discussed  that  how  the  growth  of  the  boundary  layer,  which  was  really

continuous and slow the rate  of growth of boundary layer  was slow for the case of

laminar flow, it suddenly starts to increase at a rapid rate.

So, there is  no clear  demarcation  about  where laminar  flow ends and turbulent  flow

begins, but just for convenience we assume we assign a specific value of actual Reynolds

number to the flow. So, when the Reynolds number is 5 into 10 to the power 5 and we

define this Reynolds number by through the use of x that is the axial length in the length

scale of Reynolds number.

So, the Reynolds number defined for flow over a flat plate is x v rho by mu where x is

the actual  length.  So, of course,  as I move into move along the plate the value of x

increases, the value of Reynolds number also increases. And therefore, there would be a

transition number assigned as 5 into 10 to the power 5 beyond, which it is assumed that

the flow is entirely turbulent.

So, based on this  in based on the concept of eddies there is 2 terms which we have

discussed in the last class, eddy diffusivity and eddy thermal conductivity. Now both

these terms are to be evaluated experimentally, because there is there is lot of there are

lot of theory, which have been proposed to estimate the value of these eddies the eddy

diffusivities.



However, a clear cut expression for the for these eddies is yet to be universary accepted.

So, people are using different ways different of different techniques to decide about what

would be the momentum transfer in laminar flow? As well as in turbulent flow and what

would be the value of heat transfer? And the parameter of interest in convective heat

transfer as I have discussed before as well is the heat transfer coefficient, denoted by H

or the dimensionless form of this dimensionless number involving H, which is known as

the Nusselt number.

So, the entire study of convective heat transfer is to is to obtain the write expression for

the Nusselt number for a variety of flow conditions. So, similarly the for the case of

momentum transfer the parameter engineering parameter of interest is c f or the friction

coefficient. So, this c f the expression for c f in laminar flow is known to us we have

already derive that, what would be the value of c what would be the expression for c f in

laminar flow.

But, the question still remains is how do we extend this expression for c f in turbulent

flow and is there a way through which once I know the expression for c f, the expression

for  Nusselt  number  can  be  automatically  reduced,  automatically  obtained  from  the

known expression  of  c  f.  In  other  words  we are  trying  to  see  that  if  there  exists  a

similarity between momentum transfer or c f and heat transfer there is Nusselt number.

So, the relation between c f and Nusselt number and under what condition this relation of

equivalence between c f and Nusselt number can be used is going to be the topic of this

class and 2 or 3 subsequent classes. Because, what I what I have told you earlier is at the

heat transfer is coupled to momentum transfer, but momentum transfer is not couple to

heat transfer provided the thermo physical properties do not vary do not change.

So,  we can  solve  the  heat  the  fluid  mechanics  part  of  it  fluid  mechanics  part  of  it

transport phenomena independent of heat transfer.

So, but the heat transfer part cannot be solved without solving the momentum transfer

part. So, our energy is therefore, directed to solve the problem which is simpler of these

2, that is the momentum transfer and momentum transfer in turbulent flow. I will not

discuss about the technique or the method that that was used to obtain an expression for c

f. You probably have read it in your fluid mechanics class, if you have not there is an



excellent treatment of turbulent flow expression for c f, in the text book fluid mechanics

by fox and McDonald.

In that textbook in the textbook of fox and McDonald, what they have shown is that they

have introduced something called, which is called the momentum integral equation. So,

using this where the integral equation means it is going to look at the phenomena over a

certain wavelength and therefore, any quantities that are obtained out of the solution of

that equation the momentum the integral the integral equations are not point values, but

they are length averaged values. So, momentum integral equation and the Newton’s law

or other the equivalent form of Navier stokes in integral form provides a powerful tool to

examine what is happening for flow inside a boundary layer?

This momentum integral equation is not only where is there is no restriction that it is to

be used for laminar flow only. Whereas, for the case of Navier stokes equation, that you

are aware of it is valid only for laminar flow, whenever there is turbulence present in the

system the additional terms would appear for to account for the enhanced momentum

transfer. And those additional terms collectively are known as Reynolds stresses.

So,  the  Navier  stokes  equation  as  such  is  not  valid  for  turbulent  flow.  And  these

Reynolds stresses as I have as I have told you in previous classes their extremely difficult

to  evaluate  extremely  difficult  to  get  a  specific  value.  So,  therefore,  the  integral

momentum integral equation, since it is not limited to laminar flow only gives us a way

to address turbulent flow inside the boundary layer.

This  integral  equation  and  an  another  advantage  of  this  is  the  solution  of  is  this

momentum integral equation for specially for Newtonian fluids would give rise to an

ordinary differential equation, which can simply be integrated to obtain the parameter of

interest,  which is delta the thickness of the boundary layer as a function of Reynolds

number. The same way it was done for the case of laminar flow.

And, once you have delta then it is also possible to obtain the expression of c f, but in

there we have to invoke the blazes friction factor or in other words the f that you see in

Moody’s diagram of friction factor versus Reynolds number. So, with the knowledge of

frictions f versus Reynolds number as is given in moody diagram and through the use of

momentum integral equation it is possible to obtain and expression for c f in turbulent



flow. So, I would derive that expression since it is something which probably has been

covered in fluid mechanics.

So, I leave that part and it will directly provide you with the expression for c f in the case

of  turbulent  flow or  the  expression  for  delta  how does  delta  change with  x  or  with

Reynolds number for the case of turbulent flow. The important thing that I would like to

stress I would like to show you in this class is once this knowledge of c f and delta they

are known to us, how do we get the expression for Nusselt number, when we have heat

transfer as well inside the thermal boundary layer?.

So, our analysis for starts with the a priory knowledge of the expression of c f that was

obtained from the fluid mechanics, momentum integral equation, Moody’s diagram and

so, on.

(Refer Slide Time: 10:14)

So, if we come to see over here the from the this is what is the flow that is and you have

initially laminar at x e the transition point it changes from laminar to turbulent. And as

you can see the growth of the turbulent layer is much more rapid as compare to the

growth of the laminar boundary layer.

So, what a I have written down the expression for C f x. So, this is from experiment and

also from theory the friction coefficient as a function of actual location can be expressed



as 0.058 into Reynolds to the power minus 1 1 minus 1 by 5. And, any relation is valid

when you have to specify the limits up to which the expression is valid.

So, for a Reynolds number, which is greater than 5 into 10 to the power of 5; that means,

this x e corresponds to Reynolds equals 5 into 10 to the power 5. So, when the flow starts

to become turbulent from this point up to a Reynolds number of 10 to the power 7 this is

a expression which provides us with which gives us the value of the friction coefficient.

And it can also be shown it has been shown that delta the hydrodynamic boundary layer

thickness by x where x is the actual location is 0.37 R e x to the power minus 1 by 5.

So, these 2 expressions the derivation of these 2 expressions how these 2 expressions

were obtained? You would see you can see if you if  you wish you can see it  in the

reference, fluid mechanics by fox and McDonald there they have shown how these 2

expressions are obtained through the use of momentum integral equation?.

So, we will not solve this will take these 2 and proceed to see, how our knowledge of

momentum transfer in turbulent flow can be extended expanded to take into account the

heat transfer in turbulent flow. Or in other words the expression for Nusselt  number,

when  heat  transfer  is  taking  place  from this  plate  to  the  fluid.  What  would  be  the

expression for Nusselt number in turbulent flow, because you already know, what is the

expression for Nusselt number in laminar part?. So, that part is that is that is known to

us, which we you if you recall it simply 0.332 R e x to the power half and Prandtl to the

power one-third.

So, this Nusselt  number is simply going to be 0.33 Reynolds to the power half  into

Prandtl to the power one-third. So, we would like to see what would be the value of the

expression for the Nusselt  number in turbulent  flow, because in practice most of the

flows are in the turbulent region. So, would like to see the expression for that. In order to

do that, I start with writing the continuity equation which is a which is a statement of the

conservation of mass. And the momentum equation for flow inside the boundary layer I

do not I neglect the diffusive transport of x momentum in the x direction.



(Refer Slide Time: 13:44)

So, this is the x component of the momentum equation in through the use of the standard

boundary layer approximations, that I have introduced previously.

(Refer Slide Time: 13:56)

So, when you add to this the energy equation, what you get is this and we understand

from our previous discussion,  that the momentum that the thermal  transport  in the x

direction by diffusion by conduction is small as compared to the transport of heat in the y

direction, because of the small length scale that is the boundary layer thickness, which is

associated  in  the  y  direction.  This  is  a  viscous  heat  dissipation  and for  most  of  the



practical cases most of the cases that are that we encounter the viscous dissipation is

small and can be said equal to 0. This is a heat which is generated by joule heating or by

nuclear sources and so on.

So, let us assume that this is also not present in this particular system. So, the energy

equation for flow in flow and heat transferred inside a boundary layer can simply be

written as alpha times del to T by del y square and I call this as equation 3. So, these 3

equations we are going to work with these 3 equations, the continuity equation, the x

component equation and the energy equation in this one is for the x component of the

any different. These 3 equations we would like to use and to see, if anything can be can

be seen I can be done to use this  expressions for C f  in order to obtain the Nusselt

number expression for turbulent flow, that is the job we have in at our hands.

So, we start with the Non-dimensionalizing the equations. So, if I non- dimensionalize

this equations it would give us something like the similarity of the transport processes.

And,  these  similarity  of  the  transport  processes  are  going  to  be  valid  for  certain

conditions. So, we have to identify that what are the conditions, that one needs to check

before they can use this similarity between momentum transfer and heat transfer.

Now, whenever you try to do something and exercise like that, the first thing one should

do is to non-dimensionalize the equations. The advantage of non- dimensionalizing any

governing equation is that at times you would see the automatic emergence of certain

dimensionless groups, which would give you a clearer picture of the transport, which is

taking place inside the system. So, a governing equation governing equation differential

equation  being  when  you  non  dimensionalize  you  would  should  see  the  important

dimensionless parameters automatically coming out of the equation, which would let you

compare  2  systems  to  completely  different  systems  as  long  as  their  dimensionless

equations are identical.

And,  they  become identical  when the  similarity  parameter  that  you get  out  of  these

equations they are equal. In simple terms if you have Reynolds number to be equal to

5000, you know what is the flow condition that is that exists in inside the boundary

layer? So, it does not matter whether you have flow of air or flow of water or flow of

glycerin and over a flat plate, which is giving rise to this Reynolds number this is to the

specific value of Reynolds number.



If this specific value of Reynolds number is identical, then you can get a dimensionless

solution,  you  can  get  a  solution  of  the  dimensionless  film  thickness  or  the  friction

coefficient, which would can be which can be compared for flow between 3 dissimilar

fluids. So, the behavior of the flow or behavior of heat transfer inside the boundary layer

will be identical if the Reynolds number is the same, if the Reynolds number is the same

the behavior of the flow would be the same.

But, would I need to specify some other dimensionless groups or some other conditions

such that I can say it is not only the flow the heat transfer would also be the same. So,

that is what we are trying to do. So, the first step of doing that is non-dimensional is non-

dimensionalizing the governing equations and see, what or which groups come out of

that automatically?.

So,  the  parameters  that  we  use  for  non  dimensionalization  are  x  star  these  are  all

dimensionless quantities x star is x by L where L is the length of the plate over, which the

flow takes place y star is y by L u star is u by V, this is the x component of velocity, the y

component  of  velocity  is  similarly  this  is  the  approach  velocity,  the  T  star  the

dimensionless temperature is defined as T minus T S where T S is the temperature of the

solid surface the plate, and T infinity which is the temperature at a point far from the

plate in the y direction in the upward direction minus T S.

So, these are the parameters, which are which are defined in this. So, when you do that

something interesting happens and I am going to write what in this is.
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First, I would write what is the going to be the governing equation? So, the governing

equation for the case of flow is going to be u star del u star by del x star plus v star del u

start by del y star is equal to minus the pressure gradient the dimensionless form of it

plus nu by L nu by v L, this is a kinematic viscosity, this is approach velocity, this is the

length scale del square u star by del y star square. And this is for the momentum equation

x component of the momentum equation.

And, if I write the energy equation it would be u star del T star by del x star plus v star

del T star by del y star is equal to alpha by V times L this alpha is the thermal diffusivity,

which  is  k  by  rho  C  p  del  2  T  star  by  del  y  star  square.  You  can  do  this  non

dimensionalization yourself and see this is what you are getting?

The important part of this the all these are dimensionless. So, if all these u star x star del

y star del y star d p p star x star everything is dimensionless, then this also must be a

dimensionless parameter. And, if you look closely this is kinematic viscosity. So, this is

nu by rho. So, when rho comes over here we have rho V L by mu. So, this is nothing, but

1 by Reynolds number right. So, this has to be 1 by Reynolds number Reynolds number

based on the entire length of the plate.

So, non dimensionalizing the equation automatically projects are up similarity parameter,

which that we know from our experience from our knowledge a priory knowledge that it

has to be Reynolds number. Now, let us look at this combination of physical properties,



geometrical properties, and operational parameter. This one this is k by rho C p. So, you

what you have is in k by rho k by rho c p and here you have V and L.

So, what you do is you take mu over here you take mu over here and you what you then

get is or rather what you get here is if you combined these together, this is simply going

to be 1 by R e L times P r. Because, 1 by R e L as I know from here is going to be V L by

nu and Prandtl number is C p mu by k.

So, this nu is simply mu by k. So, mu and mu will cancel and what you have there is in

alpha by V L. So, this is the similarity parameter for heat transfer is Reynolds number as

well as Prandtl number, that what it should be because Prandtl number is C p nu by k.

So, the this is heat transfer. So, heat transfer should always contain C p k etcetera. And,

since this is heat transfer and we also have convective fluid flow present in the system.

So, this has to be governed by Reynolds number as well.

So, if I write the similarity parameter over here, this is simply going to be R e L and this

one is going to be Reynolds number based on the entire length and Prandtl number. So,

these 2 are the similarity parameters 1 for momentum transfer, the other for heat transfer.

Now, let us look at what is going to be the boundary conditions.

So, the first  thing the first  boundary condition that  I  am going to the first  boundary

condition  is  at  the  wall.  So,  what  happens  at  the  wall  at  the  wall  we have  no  slip

condition; that means, both the x component velocity, which is u star at any value of x

star, but since it is at the walls y is equal to 0 or y star is equal to 0 would be equal to 0.

Similarly, the v component of velocity at any value of x star, but at 0 y should also be

equal to 0. So, these 2 are nothing, but the no slip condition, that we are aware of what is

going to happen at the free stream? At the free stream; that means, the value of u star for

any value of x star, but at y equal to infinity, which is simply going to be u infinity by V

u infinity at this value of x star.

Now, if you see this the velocity with which it approaches the solid plate is V and the

constant velocity outside of the boundary layer is denoted by u infinity ok.
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So, if it is a curved plate then the then v infinity and u infinity will differ in values, but

for flow over a flat plate this V is equal to U infinity. This is true only when you have

flow over a flat plate had this been a curve plate this would not be true. Therefore, in

order to keep the general generality of the solution I have written it as u star, which is

defined as u star at infinite value of y; that means, u star when y is somewhere over here

it simply going to be u infinity by V, but we understand that for a flat plate this u infinity

by V is going to be equal to 1.

So, this is equal to 1 for the case of flat plate, but the general boundary condition at the

free stream is u star at y star is equal to infinity is this. Similarly, let us try to see what is

going to be the condition T star at x star and 0 ok? Remember, that T star is defined as T

minus T S by T infinity minus T S. So, when y is equal to 0 this T would simply be equal

to T S. So, this is going to be equal to 0 and what happens at the free stream?

So, it value of T star at any x star, but at infinite distance from the wall from the plate

then at that point T simply becomes equal to T infinity. So, the temperature of the fluid

flowing over a flat plate at a point far from the plate; that means, y equal mathematical

speaking y equal infinity, this T is simply going to be equal to T infinity and I am going

to have this to be equal to 1. So, if you if you realize if you if you understand these cases

then the governing equation, the similarity parameter and the boundary conditions.



So,  this  would  give  us  the  starting  point  to  ensure  or  to  drive,  when  and  how the

momentum transfer part of it is going to be similar to that of the heat transfer. So, let us

talk  something  about  the  governing  equations,  the  dimensionless  forms  and that  the

boundary conditions. Now, these 2 equations one governing momentum transfer and one

governing heat transfer, they would be identical provided these 2 are equal.

So,  if  your  Reynolds  number  are  same  and  Prandtl  number  is  equal  to  1,  then  in

dimensionless form there is no difference between equation 1 and equation 2. I repeat

once again. If the Reynolds number values are same in for the case of heat for the case of

momentum transfer and for the case of heat transfer. And, if in addition Prandtl number

is equal to 1, then these 2 equations become identical. In one case we are talking about

velocity x component of velocity, in the other case we are talking about the temperature

the dimensionless temperature.

So, the dimensionless form of u and the dimensionless u star and the dimensionless form

of  e  star  would  be  identical  provided  these  similarity  parameters  these  2  similar

parameters are equal and the value of Prandtl number is equal to 1. And, if in addition

when you look at the boundary conditions, if in addition the flow is taking place over a

flat plate such that u star at x star and y star equals infinity, if this is on a flat plate, then

this boundary condition and this boundary condition would be identical.

These 2 are identical anyway so, far a flat plate the second boundary conditions would

also be identical.  So, therefore, it clearly gives us an idea of what is going to be the

similarity?  The  equivalents  between  heat  transfer  and  momentum  transfer.  So,  with

dimensionless form of the equation simply provides simply tells me that, if the Reynolds

number numbers their kept constant and if Prandtl number is equal to 1, and if the flow

takes place over a flat plate then the 2 governing equations are identical the boundary

conditions are also identical.

So, in that happens when the governing equations and the boundary conditions are the

same, the 2 systems become dynamically similar. And, for a dynamically similar for 2

dynamically  similar  systems the expression of  the  dependent  variable  can  simply  be

replaced by the expression of another dimensionless variable. Or in other words what I

try what I am trying to say is that? If the dynamic similarity between heat transfer and

fluid  mechanics  is  achieved,  then  any  expression  of  u  star  can  be  modified  as  an



expression of T star by simply replacing the quantity element quantities with the relevant

dimensionless quantities that is there is therefore, the second flow second transport case.

So, 2 dynamically similar systems I know what is what is u star going to be, if I know

that then any derivative of u star any derivative expression utilizing the expression of u

star can also be substituted to obtain what would be the expression for T star and let us

say  del  T  star  del  y  star  the  temperature  gradient.  So,  the  if  I  know  the  velocity

expression  and  if  I  know  the  velocity  gradient  expression,  then  through  dynamic

similarity I should be able to obtain what is the temperature expression? And what is the

temperature gradient expression?.

And these approach when the 2 systems are made dynamically similar through the choice

of  equal  Reynolds  number  and  through  the  peculiar  at  this  point  choice  of  Prandtl

number equal to 1, because Prandtl number may not be equal to 1 for many of the fluids,

but if it is equal to 1 then complete equivalents between momentum transfer and heat

transfer will exist. And, the analogy between these 2 for a special condition of equality of

Reynolds number and unit  value of Prandtl  number this special  analogy is known as

Reynolds analogy.

So, in the next class we would use this Reynolds analogy to see if I can switch from a

known  expression  of  c  f  to  an  expression  for  Nusselt  number.  And,  that  would

underscore the importance of this analogy the Reynolds analogy and somewhat extended

are  modified  form of  Reynolds  analogy, which  would  be  valid  not  only  for  Prandtl

number equal to 1, which is unrealistic to expect for many of the fluids, but for over a

wide range of  Prandtl  numbers.  So,  our next  class  the topic would be the Reynolds

analogy and the modified Reynolds analogy.


