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Lecture - 23
The Flat Plate in Parallel Flow – Heat Transfer

In the last class we have seen how the Growth of the Hydrodynamic Boundary Layer on

a Flat Plate can be analyzed analytically. Though towards the end we had to resort to

numerical solution because the, we could convert the p d to an o d by combining the

independent variables in by defining a stream function. However, the resulting ordinary

differential  equation  that  we  obtain  was  non-linear  and  analytics  solution  was  not

possible and then we have to use numerical solutions.

However, those numerical solutions give us some very interesting results, looking at the

value of the stream function, value of the dimensional stream function and its relation

with v x and v y and noting that the v x and v y would be 0 at y equal 0. Due to the no

slip condition we could obtain the expression for the growth of hydrodynamic boundary

layer as a function of operational parameter, which is the velocity with which the fluid

approaches the plate. And the length scale which is the axial length in the direction of

flow and thermo physical properties which are mu and rho.

So, therefore, the expression for delta, the thickness of the boundary layer was expressed

in terms of Reynolds number, when you combine all them it becomes Reynolds number.

So, the expression for, expression was obtained as delta to be equal to 5 x by root over

Re x.
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 For the case of shear stress, rather the wall shear stress we obtained this expression for

the wall shear stress and the another quantity of engineering importance is the wall shear

stress coefficient or C f which is, which turned out to be 0.664 by Re x. And these two

rows in the numerical solution where important which gives us some idea of eta equal 0

which corresponds to no slip condition. 

So, from there we obtained the expression for the wall shear stress sorry, the thickness of

the boundary layer. What we would now like to do is use this knowledge to analyze flat

plate in parallel flow, but this time it is going to be the heat transfer case.



(Refer Slide Time: 02:53)

So, in the heat transfer when there is going to be a difference in temperature between the

plate and the fluid which is approaching. So, this is let us say is a T S and the fluid which

is approaching is at a temperature T infinity with its velocity equals to U and then that is

going to be the growth of the thermal boundary layer. It may or may not coincide, may

lie above or below the hydrodynamic boundary layer.

But this is the thermal boundary layer, let us call  it  as TBL and the energy equation

corresponding energy equation would be v x del T del x plus v y del T del y is the alpha

times del 2 T by del y square. So, this is the equation which now would, we would have

to solve, but we already have an idea of the value of v x and v y at different values of x.

So, our hydrodynamic solution has already given us the, from this table it has already

given us what would be the value of f and f prime which are required to calculate the v x

and v y. 

So, we would now go for again define a dimensionless temperature, temperature which is

defined as T star to be equals T minus T S where, T S is the temperature of the solid

surface divided by T infinity; Where T infinity is the temperature of the fluid outside of

the thermal boundary layer, T infinity minus T S. And we also assume the T is going to

be a function, the T star, this one is a function of, we understand it is function of both x

and y. The value of T star would depend where we are in terms of the axial location as

well as in terms of the vertical location 



So, therefore, this T star is a function of eta, the eta that we have defined before. So, this

is  what  we have  assumed and when we make the  substitutions,  in  this  equation  the

governing equation turns out to be d 2 T star by d eta square plus P r by 2 f dT star by d

eta equals 0. This is a very interesting, very interesting result, I skip the steps where you

substitute v x and v y, del T del x and del T del y and so on by assuming this T as a

function of eta and we understand that eta is equal to root y times root over U by nu x.

When we do that the ordinary, the partial differential equation gets transformed into an

ordinary differential equation. The point to note here is first of all the appearance of f

prime in the energy equation mix it, coupled with the with the hydrodynamic part of the

solution. 

So, the presence of f denotes that the energy equation and the momentum equation are

coupled, you would not be able to solve the equation, you would not be able to solve the

energy equation unless you solve the momentum equation. So, you need to know the

value of f priori before even start solving this equation; the second one to note is the

appearance of P r Prandtl number in here. So, this Prandtl number is defined as you know

as C p mu by k where, C p is the thermal capacity heat capacity, mu is the viscosity and k

is the thermal conductivity. So, if you look at this expression and you already have, you

already know from this table that: what is the value of f for different values of eta. 

So,  the  value  of  eta  and  f  are  already  known  to  you  from  the  solution  of  the

hydrodynamic part of the momentum transfer equation. So therefore, this f as a function

of eta is known to you. So, if this is known then I should be able to numerically solved

for T star as a function of eta. Since, my f verses eta is known, I can solve for T star as a

function of eta provided the value of Prandtl number is known to me. 

So, in order to numerically solve this equation, the only thing I need to do is specify the

value of Prandtl number, the moment I specify the Prandtl number to be let us say 0.7.

Then I  should be able  to  numerically  solve it  because,  if  dependence  of f  on eat  is

already known to me and therefore, I should be able to obtain T star as a function of eta

for a specific value of Prandtl number. So, that is the only thing we have need to realize

in here that, T star as a function of eta can be obtained at a specific value of Prandtl

number.



So, that is the only thing which is which is which is remaining here, which is to be

clarified here and it has been found that for this range of Prandtl number 0.6 to 50, 5 0.

results for the surface temperature gradient which is dT star by d eta at eta equal 0, can

be expressed as dT star by d eta at eta equal 0 to be equals 0.332 Prandtl to the power

one third. This is very interesting very important result, as we have seen we need to have,

we need to know the numerical value of Prandtl number to solve it. 

So, as I different values of Prandtl number and start solving this equation 0.5, 0.75, 1,

1.25, 10, 20 so and so on. What is interesting, the observation that was obtained is that

dT star by d eta at eta equal 0, which you can obtain from the solution of this, provided

you assume a value of Prandtl number, can be expressed as a function of Prandtl number

over a wide range of Prandtl number. 

So, the observation once again is that for, when Prandtl number lies in this range the

surface temperature  gradient;  that  means,  at  eta  equal  0 dT dT star  by d eta  can be

expressed  as  a  function  of  Prandtl  number  in  this  functional  form.  Now, why  is  it

important, why I am at all interested in dT star d eta at eta equal 0. The same reason I

was interested in trying to find out what is the velocity gradient at y equal 0; that means,

at eta equal 0 because velocity gradient at y equal 0. That means, on the surface, at this at

the at the solid surface gives me what is the force exhorted by the moving fluid on the

solid, in other words I am, I was defining an important transport coefficient or defining

transport phenomena related to force exhorted by a moving fluid on a, on a stationary

solid. 

Similarly, dT star, d eta at eta equal 0 that means, the velocity gradient at  y equal 0

should give me some idea of the heat transfer process that is taking place in the situation,

where as cold fluid flows over a hot plate. So, the temperature gradient at the interface

should give us an idea of what is the convective heat transfer coefficient in this process

and we understand the entire study of conviction is try to find out what is the convective

heat transfer coefficient. What is the relation or correlation that can be used to obtain the

value of the heat transfer coefficient, convective heat transfer coefficient and in order to

do that, the knowledge of dT star d eta at y at eta equal 0 will play, does play a very

significant role.



So, next what we are going to see is how this dT star d eta at eta equal 0 can be related to

the convective heat transfer coefficient, but to do that I need to have an idea of what is

the Prandtl number. So, what we have seen is that for a large range of Prandtl number,

the temperature gradient at the interface can be expressed as a function of, can be fitted

to the variation in Prandtl number. So, dT star d eta at eta equal 0 can be correlated to

Prandtl number to the power something with a constant in front of it. 

So, I will start writing it and then I will show you how it would give us an expression for

the heat transfer coefficient. So, let us start with that, so this dT star, d eta at eta equal 0

is equal to 0.332 Prandtl to the power one third this is our starting point, the heat transfer

coefficient h suffix s x.
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That means, it is a local value of the heat transfer coefficient can be defined as, from

Newton’s law of cooling S cube double prime S by T S minus T infinity. T S is the

temperature of the solid surface, t infinity is the temperature of the liquid. So, if this is

the flux the Newton’s law of cooling connects the convective heat transfer coefficient

with q double prime is in this way. So, I can write it as T S minus T infinity times k, del

T by del y at y equal 0. 

So, this is Newton’s law of cooling and this is substituting Fourier’s law of conduction

for the surface heat flux because, as we have discussed many times before on the surface

the fluid molecules  are  immovable.  And therefore,  the transport  of heat  through this



immovable layer of molecules of the fluid can take place, does do take dose take place

only by conduction and that is why I am substituting the Newton’s law of conduction in

here. So, this now can be modified little bit, it is T infinity minus T S by T S minus T

infinity, I am trying to use the definition of T star. Where the definition of T star is T

minus T S by T infinity minus T S this times k del T star by del y at y equal 0. 

So,  this  to  cancel,  the  negative  sign  will  disappear  so,  my  h  x  is  k  by  L  thermal

conductivity by L because, I am converting this by into dimensionless one as well, del T

star by del y star at y star equal to 0. So, y star is simply defined as y by L, where L is the

length of the entire length of the plate over which this heat transfer is taking place. Look

at this equation carefully, what you having here is, a if I bring this L on the other side and

k over here and of shoot of this equation is h x local value of heat transfer coefficient.; x

denotes the location L by k is equal to del T star by del y star, at y star equal to 0. What is

this, h L by k this h L by k is dimensionless and it is denoted by Nusselt number, Nu

local value that is why I put the substitute x.

So, this is Nusselt number which denotes conviction is equal to del T star by del y star at

y star equal 0. This is an unique definition of Nusselt number, which simply tells you that

the  Nusselt  number  is  nothing,  but  the  dimensionless  temperature  gradient  at  the

interface,  Nusselt  number is del T star del y star at y star equal to 0. So, the proper

definition of Nusselt number is not simply h L by k, the correct way to express Nusselt

number is it is physically the dimensionless temperature gradient at the solid liquid, in

solid fluid interface. 

So, that is one way to look at the genesis or the physical significance of Nusselt number.

So, now, let us proceed with this and see that with our knowledge of del dT star d eta at

eta equal 0, can somehow be plugged into this expression to obtain a more compact,

more useful expression for Nusselt number in laminar flow for flow over a flat plate. 

So, I continue with this once again and what I do is this h x is k U infinity by nu x to the

power half, del T star by del eta at eta equal 0. So, I convert this y to eta and that is why

these  terms  do appear  in  front  of  it  and  since  T star  is  a  function  only  of  eta.  So,

therefore, the partial sign can be replaced by ordinary differential, ordinary differential

signs.  So,  t  star  is  a  function  only  of  eta  and this  I  have  already seen;  what  is  the

expression for this from our previous study. 



So, now I am going to write this, bring this over here take the x to you other side and

write the final expression for Nusselt number, the local value of Nusselt number as h x

local value of the convective heat transfer coefficient; x by k to be equals 0.332 Reynolds

number based on local Reynolds number to the power half into Prandtl to the power one

third. The limitations is this, the Prandtl number has to lie between 0.6 and 50 which

was, which was used to obtain this expression. 

So, what I see here then, that a compact expression for Nusselt number can be obtained

by simply invoking the result over this, and realizing the T star is a function of eta. And

this expression is going to be extremely useful for solving or for solving or for analyzing

situations in which we have flow over a flat plate where the temperature of the plate and

the temperature of the fluid which is flowing over it is, they are different. 

So, we are going to have convective heat transfer taking place and this is the first time

that  you  see  an  expression  for  h  is  obtained  in  terms  of  Reynolds  number  which

characterizes the flow, which brings in the which brings in the hydrodynamic part of it

into the expression. And a function of Prandtl number which is C p mu by k and it gives

some  idea  of  the  convection  and  conduction  the  relative  importance  of  convection

conduction, momentum diffusivity, thermal diffusivity into our discussion. 

This gives me the average, this gives me the local value of the heat transfer coefficient,

like  before we have obtain  C f  x  that  is  the friction coefficient  at  a  specific  x.  The

expression that I have obtain for heat transfer it is N u x or h x the convective heat

transfer coefficient at a specific x. But as an engineer, you are probably more interested

in finding out; what is the average value of the heat transfer coefficient or what is the

average value of the friction coefficient over the entire plate surface. You do not want to

know most likely what is the value of the heat transfer coefficient at a specific location,

you rather try to find out what is the average value of heat transfer coefficient. 

Because, that would give you some idea of what is the total amount of heat transfer if

there is a way to evaluate the total the average value of heat transfer coefficient, then the

total heat transfer coefficient can simply you obtained as h a delta T ok, you do not have

to use h x. So, our next small item which is remaining is, how to obtain the average value

of  heat  transfer  coefficient  from  the  expression  of  the  local  value  of  heat  transfer



coefficient. So, let us do that and see how, what would what would happen in this case.

So, the average value of a of this the average value.
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So, this is about average coefficients. So, C f and I put a bar over it to say that this is the

average value, must be tau average, tau surface average by rho U infinity square by 2that

is the definition of C f. But here I am using the average one so, what is tau this thing

then, the average value of the shear stress is from 0 to x tau s x d x. So, this can be

written as 1 by x, 0 to x 0.332 rho u square by root over Re x d x. This tau x is simply I

am using the expression of tau x which I have obtained before and once you do this

integration,  you would  see  that  C f,  the  average  value  of  C f  is  going to  be  1.328

Reynolds to the power minus half ok. 

And in a similar to the, momentum transfer the value of, the average value of h x would

simply be 1 by x 0 to x, that is the definition of lengthwise average h x d x, which would

be putting the expression over here k by x. Prandtl number is a constant so it goes out of

the integration sign, U infinity by nu which is to the power half out constant, out of the

integration sign 0 to x d x by x to the power half. 

So, once you do this your h, the average heat transfer coefficient is going to be equal to

twice  of  the local  heat  transfer  coefficient.  Therefore,  your average value of Nusselt

number, the expression for Nusselt number would be average h times x by k and this

would turn out to be 0.664 Re x to the power half Prandtl to the power one third. So, this



gives  you the  average  value  which  is  more  important  in  realistically, in  engineering

situations then the local value of the heat transfer coefficient. So, what we say then is C f

average is equals twice C f local and h average is twice local. 

So,  we have  two equations  then,  one  equation  is  for  the  local  value  of  the  Nusselt

number or local value of the heat transfer coefficient and simply finding out the average.

And the average in is done by integrating it over a certain length and dividing it by the

length, which is the standard definition for average based on the length. What you would

see is this the average, the local value and the average value differs only by a factor of,

only by a factor of 2 and that is why the, this is the relation between the average and the

local.
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Which is the same as that between the shear stress coefficient the local at the average,

but we also need to know, that need to remind you once again that this expression is also

valid for a Prandtl number range: between 0.6 to 50. So, what we have done in this class,

in this exercise and the previous class is to show you that to why it is important to study

what  is  happening inside  the  boundary  layer,  inside  the  thermal  boundary  layer  and

inside the momentum boundary layer. Because all the phenomena is concentrated in a

region very close to the solid surface, in one case its momentum transfer and in the other

case  it  is  heat  transfer.  The  momentum transfer  case  can  be  handled  by  defining  a

combination variable eta and the dimensionless stream function f. 



When I do that what I would have, what I would obtained for the case of hydrodynamic

boundary layer is an ordinary differential equation, non-linear higher order differential

equation containing f being the dependent variable and eta being independent variable.

That equation was solved numerically to obtain a table containing what will be the value

of f for different values of eta, in using the values and the concepts we obtained compact

relations for the growth of the boundary layer that is delta as a function of x. And you

have also obtained what is going to be the shear stress coefficient as a function of x

properties and the imposed flow condition. 

The equation for energy transfer when we non-dimensionalized it, everything that take

the temperature dimensionless temperature T star was a function of eta,  which is the

combination variable. But a term f appears their denoting or underscoring the coupling

between the fluid flow and heat transfer, Prandtl number also automatically appears in

the governing equation. This equation can be numerically solved because, I already have

the numerical solution of f versus eta, but in order to solve it numerically I first need to

need to assign a value to the Prandtl number, any number any realistic number to Prandtl

number and solve for this, assign another value and solve it again.

When that was done for a large range of Prandtl number it was found that d T star d eta

at eta equal 0; that means, the temperature gradient at the liquid solid interface can be

expressed as  a  function  of  Prandtl  number. Purely  a  fitting  between the  temperature

gradient and Prandtl number, with that we have seen how to express the heat transfer

coefficient  using  Newton’s  law  of  cooling  and  then  Fourier’s  law.  And  obtain

fundamental definition of Nusselt number to be the dimensionless temperature gradient

at the interface. We proceed with that utilizing the values that we have obtained and we

got an expression for local Nusselt number, as a function of Reynolds number and as a

function of Prandtl number, That 0.332 Reynolds to the power something, Prandtl to the

power something valid within the range of Prandtl number. 

Then we realize that it would probably be easier to work with the average quantities, the

average  value  of  heat  transfer  coefficient  or  the  average  value  of  the  shear  stress

coefficient. So, what we have done, we have done length average in I have finding out

the average of these quantities h or C f for the entire length of the plate over which the

flow and heat transfer list taking place. So, what we got is that the average values are

always twice  the  local  value.  So,  we have now obtained and expression for  Nusselt



number, average Nusselt  number when flow and heat transfer takes place over a flat

plate. 

But remember all these are limited to laminar flow, laminar flow conditions prevailing

over the solid plate. What happens in turbulent is something very interesting, something

entirely different and you would expect that more heat transfer is, more heat transfer is

possible when you create turbulent conditions inside the thermal boundary layer. Which

we will discuss in the next class, but today’s class is all about laminar flow and heat

transfer when flow takes place over a parallel plate. 


