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So, we have covered the energy equation, it is derivation the significance of each of these

terms in the equations. And, I have shown you how to use that equation for a specific

example,  in  which  the  viscous  heating  was  considered  to  be  important  for  a  planet

system. So, I would show you the energy equation once again. And, then solve a few

problems on it, after I explain the significance once again.

(Refer Slide Time: 00:45)

So, let us look at this energy equation, which I think now you would be able to see, and

as you can see the energy equation is presented for all 3 coordinate systems. So, the first

one  that  you see this  is  for  Cartesian  coordinate  systems,  this  one is  for  cylindrical

coordinate systems, and the last one is for spherical coordinate systems.



(Refer Slide Time: 01:10)

So, the first one is in x y z and the temperature is a function of x y x y and z and it could

also be a function of time. So, the transient behavior is also included in it. And, if you

look at the equation I have added this phi v term in all 3 equations, this phi v refers to the

viscous dissipation, the energy generation due to viscous heat, which in most of the cases

as I have mentioned before may be neglected.  And it  is easy to identify the viscous

dissipation term in energy equation by the appearance  of viscosity  mu with all  such

terms.

So, in the expanded form of the equation, where the complete form of phi v is included,

you should be able to identify them as referring to viscous dissipation energy generation

by viscous dissipation, because of the appearance of mu in all those terms. What is here

as Q dot; is the energy generated by some other means in the system. So, it could be

electrical, nuclear or some other form of energy, which is generated inside the system.

So, the significance of phi v should now be cleared to all of you and the expanded form

of phi v for all these systems would be provided to you. And, their also available in the

text book, which I did not include in these equations. One more point here is I never

expect  you  to  remember  this  equation.  So,  whenever  you  need  to  use  the  energy

equation, the equation in this specific firm would be provided in the question papers.



So, do not memorize this equation, but rather if the equation is given you should be able

to identify what are the significants of each of these terms, in how to resolve them? How

to neglect or take them into consideration based on the physics of the problem?

So, if I take the first equation, which is the energy equation in the Cartesian coordinate,

what you see as the first term on the left hand side this del temperature by del time

simply refers  to  the  transient  nature  of  the process.  So,  had this  been a  steady state

process this first term would obviously, be equal to 0; so this first term would be equal to

0 for a steady state system all the other terms the remaining 3 terms on the right on the

left hand side, they have velocity is the component of velocity v x v y and v z associated

with them.

So, they collectively refer to the convective transport of heat into the system. So, the

appearances of v x, v y and v z in their origin in their component form the referred to the

transport  of  energy by convection  in  the  x direction  in  the  y direction  and in  the  z

direction.

So, the entire left hand side of the energy equation refers to transient term the first term

being the transient term and the second third and fourth or the convective terms. When

you  go  to  the  right  hand  side  the  appearance  of  thermal  conductivity  k,  essentially

signifies or identifies this terms that are associated with conductive heat transfer, heat

transfer due to conduction. So, k del to del x square or del y square or del z square they

refer to conduction.

So, the right hand side contains the conductive terms, the viscous dissipation term and

the energy generation inside the system. Should together this provides the complete form

of the energy equation, which does not take into account the mechanical energy, because

this equation was derived from the first law of thermodynamics considering both the

internal  and  the  kinetic  energy. From that  equation  the  kinetic  energy  equation  was

subtracted to obtain the energy equation in this form, which does not take into account

are kinetic energy or the mechanical energy part of the mechanical energy part of the

equation.

So, these 3 are the equations, which we would use in all our problem solution. So, if you

look at the second and the third equation, the cylindrical and the spherical coordinates; in

the cylindrical coordinates you have the independent variable independent space variable



as r theta and z so, the radial direction the angular direction and the actual direction. So,

these and their associated with velocity in the r direction, velocity in the theta direction,

and velocity in the actual direction so, transient and convective terms in a cylindrical

coordinates  systems.  The  right  hand  side  refers  to  conductive  heat  transfer  in  the  r

direction, conductive heat transfer in the theta direction and conductive heat transfer in

the z direction.

In similarly, we have the dissipation function and the heat generation 1.2. Note here is

that obviously, since this is the coordinate systems are different, the expression of phi v

here and over here are going to be different and the complete expanded form of phi v for

different coordinate systems are available in your textbook.

And, when we come to the cylindrical coordinate systems we have r theta and phi this

these 3 terms refer to conviction, transient, the conductive heat transfer in the r direction,

conductive heat transfer in the theta and in the phi direction. Again, we have this phi v

and Q dot. So, I guess the significance of the terms in energy equation is now clear to

you.  So,  what  you  need  to  do  what  is  should  do  in  solving  problems  of  combined

conduction  and  convection  or  convection  alone  is  to  see,  which  of  these  terms  is

significant.  In therefore,  the problem at  hand and then you can cancel  out the terms

which are not present which are not relevant in that case.

So,  if  it  is  a  steady  state;  obviously,  this  term would  be  equal  to  0,  if  it  is  a  one

dimensional conduction only case, then v x v y and v z are 0. So, the entire left hand side

would be 0 for conduction only case no convection.  And, only these 3 terms would

remain. And, normally phi v is neglect phi v is neglected in if we may or may not have Q

the heat generated in the system.

So, for a one dimensional conduction only case, the only the first term will remain. One

dimensional  steady  state,  conduction  case,  with  no  heat  generation;  the  governing

equation would simply be k d 2 T d x square to be equal to 0. And, you know that this is

going  to  give  rise  to  a  linear,  temperature,  distribution  as  you  have  done  in  your

conductional analysis. If in addition you also have Q dot to be present, then the form of

this equation be k d 2 T d x square plus Q dot is equal to 0. And, you should be able to

solve the equation with appropriate boundary conditions as defined or as mentioned or as

you can see in form from the statement of the problem.



So, this once you follow a methodical approach in identifying the equation, in identifying

and cancelling  terms which are not relevant  in the equation.  It  should give rise to a

compact  equation  describing  the  temperature  distribution  in  the  system,  either  in

presence or absence of conduction or convection. And, mostly in absence of viscous heat

dissipation and without with or without heat generation by some other means.

So, this is how you would solve any problem in heat transfer, where both conduction and

convectional present. So, which should not be difficult, the equation looks too long and

complicated,  but  once  you understand their  significance  the  solution  of  the  problem

should be in theory very simple. At least would be able to obtain the governing equation

and identify the boundary conditions.

In some cases the and analytic  analytical  solution is  possible,  you would be able  to

integrate the differential the governing differential equation without much of a travel and

then you get an analytic expression for temperature as a function of position and or time.

In some cases you we analytics solution would not be possible. So, we may have to go

for a semi analytics solution and in many cases a numerical solution.

So,  there are  several  packages  available  for  numerical  solution  of  the  heat  diffusion

equation and we will discuss them as we move along. One more point which is should be

apparent when you look at the energy equation carefully is the appearance of v x, v y and

v z, the 3 components of velocity. Since, you have the velocity component embedded

into the energy equation it requires the complete expression of v x v y and v z.

In  other  words  in  to  solve  the  Navier-Stokes  equation  or  you  need  to  solve  the

momentum equation, as you have done in fluid mechanics to obtain and expression of v

x, v y or v z. So, once you plug the functional dependence functional form of v x into the

energy  equation,  then  the  only  dependent  variable  would  be  temperature  and  the

independent variable should be x y z and possibly time.

So, the presence of the velocity terms in the energy equation mix the energy equation

coupled with the momentum transfer equation.  So, a pre requisite for the solution of

energy equation, in cases where convection is important; that means, where you have

these  velocity  terms  is  that  you  need  to  know  the  velocity  expression  from  your

momentum a momentum equation solution.



So, that way heat transfer is always coupled to the momentum transfer, but the reverse

may or  may not  be true,  if  you look at  your  Navier-Stokes  equation  or  equation  of

motion the momentum equation. In your fluid mechanics textbook you would see that

there are no terms containing T in there. So, that equation is independent of temperature

provided the thermophysical properties that appear in the in the momentum equation,

namely the density and the viscosity. As long as they are they are not affected by a

change  in  temperature,  as  long  as  they  are  constant  for  the  temperature  range  of

operation, the momentum equation can be solved in dependent of the energy equation.

So, that way momentum equation is uncoupled from the energy equation, but the energy

equation is coupled to the momentum equation. So, there is a one way coupling between

momentum  equation  and  energy  equation  as  long  as  the  thermophysical  properties

viscosity and density remain unaltered during the process.

So, it is important to identify and appreciate that there is a one way coupling between the

momentum equation and the energy equation. Solution of energy equation requires the

solution of momentum equation, but the reverse is not true. If the reverse it also true; that

means, for cases in which the temperature variation is such that viscosity and density

would also be changed would also vary based on the temperature, then there is a two way

coupling between the momentum equation and the energy equation.

So, with their is a two way coupling between these 2 equations then both of them the

situation is more complicated and you need to solve both the energy equation and the

momentum equation simultaneously. So, that is very important to realize the importance

of the assumption of constancy in viscosity and density to make the momentum equation

uncoupled  from the  energy equation,  which  may not  be  true  in  all  cases  for  which

combined solution at the both of these equations will have to be simultaneously solved.

So, we would see some of the examples when a mostly when there uncoupled and you

would be able to see you will be able to solve them separately. As we would see in the

next class will be talk about the thermal boundary layer and so on. But, in today’s class

we would see a very simple problem and which would establish the relation between

convection  and conduction.  And,  for  that  we would choose a  system,  which is  very

simple to visualize. Let us see a solid ball; spherical ball is at a temperature T which T 0



which is higher than the temperature of the room in which the ball is suspended in steel

air.

So, in this room if there is a steel ball whose temperature is 100 degree centigrade let us

see an it is suspended in this room, where there is no forced flow of air over the surface.

So, if all the fans etcetera in the room is switched off all the windows are closed, then it

is  safe to assume that there is no flow of heat due to convection.  Since,  there is no

external agency which forces the fluid to move fast the solid sphere, which is at a higher

temperature than that of the air surrounding it. So, in room full or room of steel air a ball

a spherical ball is being cold. So, you can think of it as the limiting case in which the

convective flow is slowly brought to 0.

So, we would like to see what is going to be the convective heat transfer coefficient, the

limiting value of the convective heat transfer coefficient when there is no flow. So, it is a

hypothetical situation. All convictions require the presence of a flow, but if I am slowly

reducing the flow velocity the flow past the cylinder. Then if I can make the velocity

very small  then all  the heat is  going to be transferred from the solid to the air  by a

conduction process.

And, if I equate that conduction by which heat is lost from the sphere to a hypothetical

heat transfer coefficient at 0 velocity, then the value of each convective heat transfer

coefficient or the value of the dimensionless number, which is in convection, which is

common in convection, which is Nusselt number, which is defined as h L by k. H is the

convective  heat  transfer  coefficient,  L  is  the  length  scale  and  k  is  the  thermal

conductivity of the fluid surrounding it, then this h L by k refers to Nusselt number. And,

you would see that in almost all of the relations for convective heat transfer coefficient,

the relation or correlation is expressed in terms of Nusselt number.

So, that way Nusselt number plays a very important role in quantifying convective heat

transfer from any object, it could be a flat surface, it could be a spherical ball or it could

be a bank of tubes through which a hot fluid is flowing and cold air is pumped over

them, cold air is made to flow over them to cool the liquid which is passing through

tubes.  So,  in  all  cases  the  heat  loss  or  gain  by  the  fluid  is  expressed  in  terms  of  a

dimensionless number, which is called Nusselt number.



So, the problem that we are going to solve in this class looks at the value of Nusselt

number when the value of the imposed velocity is reduced and it is slowly brought to a

value equal to 0. So, at that point conduction convection stops and conduction takes over,

but  we would  like  to  pinpoint  to  find  out  the  asymptotic  value  of  the  heat  transfer

coefficient or the Nusselt number for the case of 0 velocity.

So, that is the problem, which we are going to look, which we are going to examine in

this class.

(Refer Slide Time: 20:30)

So,  the  problem that  we  have  now is  then  find  out  the  numerical  value  of  Nusselt

number, which is denoted by N u is equal to h times L by k, where h is a convective heat

transfer coefficient, L is the length scale of the system that we are discussing and k is a

thermal conductivity of the surrounding fluid for in stagnant air it is assume the fluid is

air and important one is stagnant. So, there is no flow in the air.

So,  I  draw the  system as  this  spherical  ball  has  radius  equal  to  R.  And the  surface

temperature is maintained at T r, where is the temperature at a point far from it is T

infinity  and the spherical  ball  is  going to lose heat  by you can by a combination  of

conduction and convection, and then you would like to see how it is going to lose it is

heat?



So, far this let us assume a thin shell of air surrounding the hot sphere ok. And, I am

going to write the energy equation for the air which is situated in this thin shell of air

completely surrounding the sphere. So, if you look over here for the energy equation for

the for the energy equation and if you see there is no velocity, the velocity there is no

imposed velocity and it is steady state case.

So, the first term would be 0 v r v theta and v phi all are 0 since it is stagnant air. So,

therefore, the entire left hand side of this equation would be 0. Since, there is no flow or

very little flow to talk about in their no question of viscous dissipation and therefore, this

term would also be 0. And, there is no heat generation in the thin shell, that in the thin

shell that I have drawn over here. So, therefore, the Q dot term would be 0. So, the terms

which would remain are the terms that represented represent conductive heat flow.

Now, let us look at a what is the variation of temperature with r theta and phi. Obviously,

the shell that we have drawn over here it in the shell there is going to be no dependence

of temperature with theta and no dependence of temperature with phi. Temperature is

only going to only going to depend on how far this shell is from the centre of the sphere?

Or in other words temperature is going to be a function only of r and nothing else.

So, this equation even though it looks long and complicated, once you understand the

significance of the terms then you would be able to cancel the whole of left hand side the

second term on the right hand side, the third term the fourth term and fifth term. And

therefore,  the governing equation for as is  for a spherical  system, which is  which is

dissipating is energy into a room full of stagnant air can simply be written as one by r

square the only non-zero term in the energy equation times k r square d t d r to be equal

to 0. So, this becomes your governing equation.

So, I can again it is so, simple to start with the general equation in obtaining governing

equation without just by looking at the equation looking at the system and cancelling the

terms. So, is my thermal conductivity is constant I am simply going to write r square d T

d r is some constant C 1, in once you integrate you should be able to integrate it would

be minus C 1 by r plus C 2, where C 1 and C 2 are constants are integration constants.

So this is required to boundary conditions. So, what could be the boundary conditions;

obviously, you would be we can see that the temperatures at 2 locations are provided to

you.  The  temperature  on  the  surface  of  the  sphere  is  known  is  equal  to  T  r  and



temperature  at  a  point  far  from the  sphere is  the  temperature  of  the air,  which is  T

infinity. So, the boundary condition the first boundary condition would be as r tends to

infinity at a firm, that is a for from it T would be equal to T infinity and this would give

you C 2 as equal to T infinity.

Therefore, the equation would becomes T minus T infinity is equal to minus C 1 by r.

And, the second boundary condition would tell you at r equals capital R; that means, on

the surface of it T is equal to T R, which would give you C 1 to be equal to T infinity

minus T R times R.

So, these are the 2 integration constants which you can evaluate by using appropriate

boundary conditions. So, therefore, using the expressions of C 1 and C 2 you would be

able to write the temperature profile.

(Refer Slide Time: 27:34)

In air that surrounds the hot sphere as T minus T infinity is equal T r minus T infinity

times capital R by small r. Or, we can rearrange it a little bit more to express within a

more elegant fashion T minus T infinity, by T R minus T infinity is equal to R by r.

So, this is what to be temperature distribution in the air is non. So, if you look at the

interface of the solid and the gas which is air so; that means, at this point right, at this

point at the interface between of the solid and the gas which is air. So that means, at this

point right at this point at the inter face between the solid and the gas the heat, which



comes in as I heat with it comes in by conduction must be equal to the heat which goes

out by convection.

So, at the interface between the solid and the liquid, the solid and the and the gas the gas

is immobilize immobile due to the due to the no slip condition. So, all the heat transfers

through this immobile gas layer must take place by conduction and on the outside of this

gas  layer  delete  the  air  is  mobile.  So,  therefore,  you can  have  conviction  from this

immobile there. So, if I think of this as my immobile layer of the gas molecules, then

heat is going to get transferred by conduction over here and over here the molecules are

mobile. So, heat is going to transfer by convection for the layer of molecular which as

situated just outside of the interface and are free to move.

So, in order to maintain steady state this conductive heat must be equal to the convective

heat.  So,  whatever  be  the  amount  of  heat  that  goes  through  the  molecules  by  a

conduction process must be equal to the convective process by, which this heat is being

picked up by the mobile gas molecules. So, if we understand that I am simply going to

write that at the interface q conduction is equal to q convection.

So, what is the expression for q conduction? By Fourier’s law it is going to be d T d r at

small r is equal to capital R and the conviction is simply h times T R minus T infinity,

this is the heat transfer coefficient. And, then when you substitute d T d r from here to

this point, what you would get is minus k T R minus T infinity R times minus 1 by R

square is equals h times T R minus T infinity which gives you that, which would give

you h R by k to be equal to 1 or h D by k is equal to 2. And this h D by k is defined as the

Nusselt number.

So, this is a very important relation which tells you what would be the value of Nusselt

number. The limiting value of Nusselt number, when there is no flow of air surrounding

the hot sphere. So, therefore, you get a numerical value of Nusselt number in the limiting

case when there is no convection. Or this is very interesting result as the expression of h

for velocity equal 0 is something, which is proven experimentary this is an asymptotic

value which would which would give you the limiting value of Nusselt number for the

case of heat loss from a sphere.

And, further calculations, further analysis showed that in presence of velocity; obviously,

the value of each would increase, because more the velocity more would be the value of



convective heat transfer each will increase an as h increases the value of Nusselt number

will also increase.

So, the expression of Nusselt number which was obtained in a semi analytical fashion

and using certain correlations, the that relation is Nusselt number based on diameter the

length scale is taken as the diameter of the sphere is 2 plus 0.4 Reynolds number to the

power half plus 0.0 6 Reynolds number to the power 2 by 3 times Prandtl number to the

power 0.4. And then you also have a viscosity ratio to the power 1 by 4.

So, what this tells this is this is a correlation, which was obtained you; obviously, do not

need to remember this, but what it shows is when the velocity is equal to 0, velocity is

set to 0, the Reynolds number would be 0. And the entire second term on the right hand

side would be 0 and the value of Nusselt number would approach to and this is what you

have obtained over here? That the limiting value of Nusselt number at steady state for as

sphere which is losing heat in a stagnant medium stagnant air is equal to 2.

So, that there is a simple, but elegant example of the use of the energy equation to obtain

the governing equation, use of appropriate boundary conditions known temperatures in

this case. To obtain the temperature profile in air and define a Nusselt number for the

case when there is no flow of air, no flow of the surrounding air which is you can assume

that it is the limiting case you can see that is it can be expressed as the case where you

have conviction with 0 velocity.

That is a hypothetical limiting value of Nusselt number to be equal to 2 and numerous

experiments and analysis has proved this to be correct. And the expression of Nusselt

number generally used for flow of air over hot sphere we say, which is equal to 2 plus

some function of Reynolds number. So, when Reynolds number is 0 Nusselt number

asymptotically, which is a value equal to 2? So, this is one example of use of energy

equation. We will see some more examples of that in the coming classes. 

But, a in the next class we will start with flow over a flat plate and how to obtain the

Nusselt number for that case in laminar flow.


