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Welcome to lecture 47, this is week 10 and we were talking about Constraint Non-linear

Programming in this  week.  In our  previous  lecture  we have  talked about  successive

linear programming for solution of non-linear programming problems. In today’s lecture

we  will  talk  about  a  similar  method  and  this  is  successive  quadratic  programming

approximation  of  a  general  non-linear  programming  problem and  a  solution  method

based on that.

(Refer Slide Time: 00:52)

So, again we start with a brief review of KKT conditions we will make use of KKT

conditions in today’s lecture. So, we have a general non-linear programming problem

minimization of objective function f x, which is the function of n variables subject to p

inequality constraints all are less or equal to type and m number of equality constraints.

So, we first formulate the Lagrangian, define Lagrange multiplier and KKT multiplayer

for each of the constraints and then formulate the Lagrangian. The Gradient conditions

which is del l del xi equal to 0. So, this will lead to n equations corresponding to n

decision variables. Feasibility check, which says that the inequality constrained and the



equality constraints must be satisfied. Switching conditions, which says the product of

Lagrange multiplier or the KKT multiplier with the inequality constrained will be equal

to  0.  Non-  negativity  of  Lagrange  multipliers  for  inequality  constraints  and  finally,

regularity  check  which  says  the  gradients  of  active  constraints  must  be  linearly

independent.
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Now, let us first talk about quadratic programming problems. We are familiar with the

structure  of  a  general  non-linear  programming  problem.  In  general  in  a  non-linear

programming  problem you  will  have  an  objective  function  which  is  non-linear  and

inequality constraints and the equality constraints are all non-linear functions of decision

variables. We have seen in case of linear programming, problem the objective function

and all  the  constraints  are  linear  functions  of  decision  variable.  In  case  of  quadratic

programming problem the objective function is a quadratic function, but the constraints

are all linear functions.

So, quadratic programming problem the objective function is a quadratic function, but all

the constraints are linear. So, quadratic programming problem has a special form where

the objective function is non-linear, but to the extent that it is a quadratic function and

similar  to  linear  programming  problem  all  the  constraints  are  linear  functions.  So,

perhaps we can intuitively think at this stage that it may be possible to solve a quadratic

programming problem by use of a linear programming problem. The way we have solve



linear programming problem maybe it is possible by some modifications we will also be

able to solve the quadratic programming problem following the method of solution of

linear programming problem.

(Refer Slide Time: 04:58)

There are various applications of linear programming problems, sorry there are various

applications  for  quadratic  programming  problems some of  them are  listed  here  least

square approximation and estimation.  The least square approximations and estimation

lead  to  a  quadratic  programming  problem,  portfolio  optimization,  signal  and  image

processing, computer vision etcetera,  optimal control, linear model predictive control,

Partial Differential Equation- constrained optimization problems in Computational Fluid

Dynamics, shape optimization, sequential quadratic programming methods for solution

of Non-Linear Programming problems etcetera. 

So, there are various interesting applications of quadratic programming problems some

of those are listed here.
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So, let us now define a general quadratic programming problem, as you have mentioned

that  for  a  quadratic  programming  problem  the  objective  function  is  the  quadratic

function. So, we can note that the objective function here is c transpose x plus half x

transpose Hx which you know that is a standard expression of a quadratic function.

Here c is an n vector, x is also n vector, each component is decision variables so, there n

decision variables and c are the corresponding coefficients. So, it is like c 1 x 1 plus c 2 x

2 like that. So, c transpose x will lead to an equation like that, H is n cross n Hessian

matrix. So, this is about the objective function which is a quadratic in x, subject to set of

inequality and equality constraints and they are all linear.

So, the inequality constrained is written as A transpose x less or equal to b, where b is m

vector. So, basically you will have A matrix, you will have x vector and then you will

have b vector. So, A is n cross m constrained matrix and this is n vector, next you have a

set of equality constrained. Similarly equality constraints are written as B transpose x

equal  to  e,  where  B is  the  constrained  matrix  n  cross  p  and  e  is  a  p  vector  which

represents the right hand side.

So, A transpose x less or equal to b, b represents the right had side vector, B transpose x

equal to e, e represents the right hand side vector and non negativity constrained on the

decision variables. So, this is a general formulation of a quadratic programming problem

where you have the objective function is a quadratic function c transpose x plus half x



transpose Hx subject to A transpose x less or equal to b as in equality constrained B

transpose  x  equal  to  e  as  equality  constraints  and  the  non negativity  constraints  on

decision variable x which is written as x greater equal to 0.

(Refer Slide Time: 10:34)

So, let us take an example, objective function is given as minus 6x 1 plus 2x 1 square

minus 2x 1 x 2 plus 2x 2 square subject to x 1 plus x 2 equal to 2 and x 1 x 2 both are

nonnegative.  The  objective  function  is  a  quadratic  function  compare  now, with  the

general form. So, can you rewrite this equations into this form we can do that you need

to identify that this expressions can be written as this note this part is c transpose x and

this  part  is  x  transpose  Hx,  x  is  the  n  vector. So,  x  transposes  is  rho vector. So,  x

transpose Hx and c transpose x with help of that you can re write this original quadratic

equation.

Similarly, x 1 plus x 2 equal to 2 can also be written as B transpose x equal to 2 note that

c H B e are identified as shown. So, I will suggest you take similar such expressions and

try to rewrite them in the standard form; that means, right in the form c transpose x plus

half x transpose a Hx for the objective function. So, identify c and H and depending on

whether you have equality constraints, inequality constraints or both you try to identify A

and B and also write the constraints in the matrix notation.
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So, now let us write down the KKT conditions for the quadratic programming problems.

So, the first thing is to introduce the slack variable to transform the inequality constraints

to equality constraints, A transpose x less or equal to b or my inequality constraints. So,

let us introduce slack variables S to each of these inequality constraints and in vector

matrix notation we can write A transpose x plus S equal to b an S is non 0 sorry S is non

negative.  We know that the slack variables will be non negative. So, note that S is a

vector. So, we have now converted then equality constraints to equality constraints. So, I

now have a objective function which is quadratic and all the constraints which are of

equality type.

So, let us now define the Lagrangian. So, the Lagrangian is define following the usual

practice  this  is  my  equality  constraints  which  are  transformed  from  the  inequality

constraints. So, in the Lagrangian formulation I have u as multipliers. So, u transpose

into A transpose x plus S minus b, this term I get for this equality constraints. Similarly

for the original equality constraints in the original problem v transpose x equal to e gets

reflected in the Lagrangian as v transpose into B transpose x minus e.

And then finally, x greater or equal to 0 is written as minus x less or equal to 0 and I

define the multiplied w. So, this becomes minus w transpose x and we add all these thing

terms to the objective function c transpose x plus half x transpose Hx. So, this is how the

Lagrangian  is  formulated,  the  objective  function  these  are  the  inequality  constraints



which I converted to equality constrained by addition of slack variables. This is for the

equality  constraints  which are already present  in  the original  quadratic  programming

problem and this is due to non negativity restrictions on the decision variables. So, once I

have this Lagrangian I can now apply the first order optimality conditions or we can

write down the KKT conditions.

(Refer Slide Time: 18:01)

So, the KKT conditions we write down now, first is the gradient of the Lagrangian with

respect to the decision variables equal to 0. So, this gives me this expression. So, this is

Lagrangian take the derivative of L with respect to each decision variable.

So, if you do that I get c from this term, I get Hx from this term, I get A u from this term,

I get B v from this term and I get minus w from this term, note that this is a linear

expression. And then you have the feasibility check so, this was gradient condition, this

is the feasibility check the feasibility check says that these constraints must be satisfied.

So, A transpose x plus S minus b equal to 0, B transpose x minus e equal to 0. And then

the complementary slackness which says u i S i equal to 0 for i equal to 1 to m and w i x

i equal to 0 for i equal to 1 to n. Note that there are n number of constraints in equality

constraints note that there are n number of inequality constraints. So, for each of them

you need slack variables.

So, these leads to u i S i equal to 0 and this n decision variables needs w i x i equal to 0

for i equal to 1 to n, note that S i u i and w i are all constrained to be greater or equal to 0,



the  slack  variables  and  the  Lagrangian  multipliers  for  the  inequality  constraints  are

nonnegative. So, that is why this grater or equal to 0 terms here. So, now, we can solve

this conditions for x, u, v, s and w that will give me the KKT point and that maybe a

candidate for optimal point.

So, now we have seen that these are basically linear equations, this is linear and these

were already linear. So, now, this can these equations can be written in a compact form

using matrix notations. So, let us see how we will do that.

(Refer Slide Time: 22:12)

So,  before  doing  that  let  us  identify  that  the  Lagrange  multipliers  for  the  equality

constraint; that means, these v are free in sign, in other words they can take both positive

and negative values.

So, we can express them as the difference of 2 non negative terms. So, this is what we

do. So, replace v as y minus z with y greater equal to 0, z greater equal to 0, but u at the

Lagrange multipliers for inequality constraints and they are already greater equal to 0.

So, now, this I define X as a vector which contains all these variables decision variables,

the Lagrangian multipliers, for the in equality constraints, the w for the x greater equal to

0, the slack variables and y and z that replaces v. So, I can define a vector of size 2 n plus

2 m plus 2 p.



Similarly I define a D vector which is minus c b and e as components. So, it is n plus m

plus p vector. Now if we define an N matrix using H as a Hessian matrix A and B and

identity matrix and null matrix I basically represents the linear systems of equations that

we obtained when you applied the KKT conditions; that means, these set of equations.

So, these set of linear systems can be represented in matrix notations using this definition

of N, this definition of X and this definition of D, by NX equal to D. So, those KKT

conditions the linear systems corresponding to KKT conditions can be written as NX

equal to D, where N is this matrix, X and D are this vector and this vector respectively.

The complementary slackness which are u i S i equal to 0 and w i x i equal to 0 can be

written as X i X n plus m plus i equal to 0, for i equal to 1 to n plus m and X i grater

equal to 0 for i equal to 1 to 2 n plus 2 m plus 2 p, note that this is capital X.

So, this capital X is a vector with the decision variable vector X u w s y and z. So, now,

if  you  look  at  these  set  of  equations  NX equal  to  D  and  this  new complementary

slackness condition we see that except this complementary slackness conditions I have a

linear  set  of  linear  systems  I  have  a  set  of  linear  systems  only  the  complementary

slackness condition is non-linear in variable X i.

So, the solution to NX equal to D if that solution satisfies the complementary slackness

condition  then  it  becomes  a  solution  to  the  KKT point  or  solution  to  the  original

Quadratic  Programming  problem.  So,  I  repeat  the  KKT conditions  of  the  Quadratic

Programming problem can be written as NX equal to D which is a set of linear systems,

which is a set of linear equations, the complementary slackness condition is non-linear.

So,  the  solutions  of  NX equal  to  D,  if  the  solution  of  NX equal  to  D satisfies  the

complementary  slackness  condition,  then  the  solution  become a  KKT point  and this

becomes a solution to the original Quadratic Programming problem.
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So, except the complementary slackness condition, all the equations in the transformed

KKT conditions  are linear. A solution of the linear  equations in  NX equal  to D that

satisfy the complementary slackness condition and the non negativity  constraint,  is a

solution to the original quadratic programming problem.

The complementary slackness condition is non-linear in variable X i, i equal to 1 to n

plus same. Thus, the simplest procedure needs to be changed to accommodate this. A

procedure developed by Wolfe and later refined by Hadley can be used and the Simplex

method will converge in a finite number of steps provided the Hessian matrix H is a

positive  definite  matrix.  This  method  is  based  on  the  phase  one  of  the  two-  Phase

Simplex Method that you have discussed earlier.

So, what we get it is that. The solution to the set of equation NX equal to D we need to

find out and if that solution satisfies the complementary slackness condition I have a

solution to the original programming problem. Now since the complementary slackness

condition  is  non-linear  the  regular  simplex  method  needs  to  be  modified,  that

modification has been proposed by Wolfe and Hadley and the modified method can be

used and the Simplex method then converges in a finite number of steps provided the

Hessian matrixes of a positive definite matrix. So, we can conclude that the quadratic

programming problem can be solved using a Simplex method where the Simplex method



needs  to  be  modified  to  accommodate  the  non-linear  complementary  slackness

conditions.

So, let us assume that we are able to solve a quadratic programming problem with non-

linear  complementary  slackness  condition  by modified  simplex  method.  So,  then  we

know how to solve a quadratic programming problem.

(Refer Slide Time: 30:33)

So, similar to sequential linear programming strategy we can now solve a general non-

linear  programming  problem  by  successively  approximating  it  as  a  quadratic

programming problem around the current estimate of the solution. Similar to sequential

linear programming strategy we can solve a general non-linear programming problem by

successively approximating it as a quadratic programming problem around the current

estimate of the solution x 0, note that a function f x can be approximated by quadratic

approximation around x 0 as shown. 

So, this is f of x 0 plus gradient of f at x 0 into x minus x 0 plus half x minus x 0

transpose  Hessian  evaluated  x  0  into  x  minus  x  0.  So,  any  function  f  x  can  be

approximated by it is quadratic approximation which is this.
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So, we now give the algorithm for successive quadratic approximation. So, formulate the

quadratic  programming  problem as  shown;  that  means,  the  objective  function  is  the

quadratic function and note that the constraints has been converted to linear functions by

performing  Taylor  series  expansion  this  we  have  learnt  during  successive  linear

programming.

So, the inequality constraints and the inequality constraints all are linearized by Taylor

series  expansion.  So,  this  is  the  quadratic  formulation.  So,  the  quadratic  objective

function linearized inequality constrained by Taylor series expansion and retuning only

first order term and also the equality constraints linearized equality constrained by Taylor

series expansion retaining the first order term and the non negativity restrictions.

So, we solve now the quadratic programming problem and set the next estimate of the

solution as x t plus 1 equal to x t plus d. So, this d is like x minus x 0 that you have seen

in the previous slide.
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So, now, we check for the convergence in the step 3 if conversely stop otherwise you go

to  step  1;  that  means,  with  the  current  estimate  again  we  reinitialize  the  quadratic

programming problem and solve again and continue until we converge.

(Refer Slide Time: 34:14)

So, now let us take an example. So, you want to solve the problem 6 x 1 by x 2 plus x 2

by x 1 square and g equal to x 1 plus x 2 minus 1 grater equal to 0, h equal to x 1 x 2

minus 2 equal to 0. So, you have equality constraints as non-linear objective function as



non-linear. So, we start with an initial feasible estimate of x 0 equal to 2, 0 that mean x 1

equal to 2, x equal to 0.

So, find out the function value add x 1 equal to 2 x 2 equal to 0 find out the value of the

objective function and find out the value of the constraints h at x equal to x 0 equal to 0 g

at x 0 equal to 2. So, h is greater than 0 the point is feasible. So, evaluate the gradient

write  down the  expression  for  the  gradient  hessian  and  the  gradient  of  the  equality

constrained, note that in equality constrained is already linear.

(Refer Slide Time: 36:23)

So, you can write down the first quadratic programming sub problem as this, note this is

coming from this. The gradient of f the gradient of the objective function evaluated the

current estimate in to d plus half transpose Hessian evaluated at current estimate in to d.

So, you make use of these to write this.

So, this is the gradient of the objective function evaluate at the current estimate 2 0, this

is  Hessian  evaluated  at  point  2  0  and  inequality  constrained  linearized  equality

constraints. Now, the second constrained this you can use to write d 1 equal to minus 2d

2. So, you can express any of this d 1 or d 2 in terms of the other one, note that d is a

vector with components d 1 and d 2.

So, d 1 can be written as minus 2d 2. So, then the solution of the single variable problem

can be obtained analytically. So, note that this is you have compare it with c transpose x



plus half x transpose hx, here x is d, d has components d 1 and d 2. Now once I express d

1 as minus 2d 2, I have a single variable problem this can be solved analytically I get the

solution as d 0 equal to minus 0.9207, 0.4604. So, once I have the solution d 0, I can get

the new point x 1 as x 0 plus d 0 which is 1.0793, 1.4604 as x 1 x 2. So, this is x 1, this is

x 2.

So, this has components like this. So, evaluate the function 5.687, equality constraint is

minus  0.424,  inequality  constraint  is  greater  than  0.  So,  the  equality  constraint  is

violated, objective function is improved. So, you have to continue the procedure and then

you can find the optimum with high accuracy; the true optimum is x 1 equal to 1, x 2

equal to 2, objective function equal to 5.

So, we are already the objective function value at 5.687. So, if you do the next iteration

you will see that you have obtained the solution with high accuracy very close to 5. So,

how will you do that? We have now the value x 1 as 1.0793, 1.4604 so, with this estimate

again you have to reinitialize the problem; that means, you have to put the values of x 1

and x 2 in these.

And, then you will write the problem in this form; that means, you will obtain the second

quadratic programming sub problem and then you will solve for d you will solve for d 1,

then you will solve for x 2 which will be x of 1 and d of 1. So, that solution we will see

that is very close to true solution 1 2 and the objective function value will also be very

close to 5. So, this is how you will be able to solve a general non-linear programming

problem using successive quadratic programming. With this we stop lecture 47 here.


