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Welcome to lecture 45. So, this is the last lecture of week 9. In this week, we have talked

about Simplex Method. As of now, we have started with the assumption that an initial

basic feasible solution is readily available. So, today we learn what happens if an initial

basic feasible solution is not readily available. So, how do I start the simplex procedures,

when readily an initial basic feasible solution is not obtain.
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So, in this context, we will talk about interruption of artificial variables. So, we will talk

about use of artificial variables. We will talk about two phase method. And finally, we

will conclude with a brief discussion on MATLAB for linear programming problems.
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So,  let  us  review our  steps  for  linear  programming  problem solution  using  simplex

method. First express the problem in standard form. We start with an initial basic feasible

solution in canonical form and set up the initial Tableau. Use the inner product rule to

find the relative-profit  coefficients for all  non-basic variables,  for basic variables this

value is 0. If all relative-profit coefficients are less or equal to 0, then the current basic

feasible solution is optimal. Otherwise, select the non-basic variable with most positive

relative-profit coefficient and that will enter the basis as basic variable.

Next, we apply the minimum ratio rule to determine the basic variable that we leave the

basis  and become non-basic  variable.  Now, perform the pivot  operations  to  get  new

Tableau and new basic feasible solution. We check if the current basic feasible solution is

optimal by calculating the relative-profit coefficients for all non-basic variables, and this

cycle is repeated until optimality conditions are reached.
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So, if you look at the second step, we say that start with an initial basic feasible solution

in canonical form and set up the initial Tableau. But, if an initial basic feasible solution is

not readily available,  the simplex Tableau cannot be form. So, you cannot start  with

simplex procedures until we can find a basic feasible solution. So, when initial  basic

feasible solution is not available, we have to follow the following steps.

Convert the linear programming problem in its standard form that means constraints are

all  equations,  non-negative  variables,  and  non-negative  right  hand  side  constants.

Examine  each constraint  for  existence  of  a  basic  variable.  If  a  basic  variable  is  not

available, a new variable is added to act as basic variable. Finally, all constraints will

have a basic variable and the system will be in canonical form. A basic feasible solution

can now easily be obtained.

The added variables are called artificial variables. They have no meaning to the original

problem  and  they  are  used  only  to  get  the  canonical  form.  As  a  part  of  simplex

procedure, these artificial variables will be forced to zero in later steps. So, what will you

do is, if initial basic feasible solution is not readily available, we will introduce artificial

variables to each constant, which does not contain a basic variable. After that we will see

that we can find the initial basic feasible solution to start with. And since these variables

so called artificial variables have no meaning to the original problem. This should be

forced to 0 in the later stages of the simplex procedure. 
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Let us consider an example.  So, we are maximize an objective function subject to 3

constants.  Now, note  the  first  constant  is  less  or  equal  to  type,  second constraint  is

greater or equal to type, and the third constraint is an equation equality type. We have

already stated that if you have a linear programming problem with all constraints are of

inequality type and less or equality type, and the right hand side constraints are positive,

then we will always get an initial basic feasible solution, because the introduction of the

slack variables will give you an initial basic feasible solution. In this example, shown we

have a lesser equal to constant, a greater or equal to constant. And for one constraint the

right hand side is negative, and that one is equality type constraint.

So, first let us introduce the slack variables, surplus variables. The first constant is an less

or equal to type, so it needs a slack variable S 1. The second constraint is greater or equal

to type, so it requires S 2, a surplus variable. So, after introduction of S 1 and S 2, my

linear programming problem is in standard form. Note that the 3rd equation does not

need any slack or surplus variable that is already an equation.
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But, since the right hand side was negative, we have multiplied throughout by minus 1 to

make the right hand side positive. So, this problem now is in standard form, but we do

not have a basic feasible solution to start with. So, what do you do, we add artificial

variables. Note that constraint 2 and 3 does not have any basic variables. In the constraint

2, we cannot consider S 2 as a basic variable. Because, if we consider x 1, x 2, x 3 as

non-basic variable, minus S 2 will be equal to 3 that means S 2 will be equal to minus 3,

so that will violate the constraint on non-negativity on S 2. So, you do not have a basic

feasible solution. So, we have to introduce artificial variables. 
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So, let us introduce two artificial variables R 1 and R 2. We introduce R 1 to constraint

number 2; we introduce R 2 to constraint number 3. And now the set of constraints that

we get for the given linear programming problem, basically gives us an artificial linear

programming problem and this one is in canonical form. Artificial, because R 1 and R 2

has no meaning to the problem, but introduction of R 1 and R 2 helps me to find a basic

feasible solution.

Now, look let us look at this artificial linear programming problem. Let us consider x 1, x

2, x 3 as non-basic variable as well as x 2. So, I consider x 1, x 2, x 3 as well as S 2 as

non-basic  variables,  and set  their  values  to  0.  So,  S  1,  R 1,  and R 2  are  my basic

variables. And the solution S 1 equal to 11, R 1 equal to 3, and R 2 equal to 1 so, we get

a basic feasible solution for the artificial problem, but for the original problem R 1 and R

2 must be 0. So, this basic feasible solution is only for the artificial linear programming

problem. This basic feasible solution is not a basic feasible solution for the original linear

programming problem, because in the original linear programming problem R 1 and R 2

must be 0. So, how do I make R 1 and R 2, 0? 
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There are two approaches to handle these artificial variables R 1 and R 2. The first one,

we talk about is known as Big M method. So, to force the artificial variables and R 1 and

R 2 to become 0, we penalize them in the objective function. So, look at the formulation

of the objective function. This was the original objective function Z equal to 3 x 1 minus



x  2  minus  x  3.  Now, I  have  included  minus  MR 1  minus  MR 2,  I  am solving  a

maximization problem. So, values of R 1 equal to 0, and R 2 equal to 0, given M a

positive large number will maximize the objective function.
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Note that the value of M is usually taken a large number say 100 or above. Then the

objective function can be written as Z equal to 3 x 1 minus x 2 minus x 3 minus 100 R 1

minus 100 R 2. Let us say for example, we have taken M equal to 100. Now, if I want to

maximize Z, since these artificial  variables times 100 are being subtracted from Z to

maximize Z, we must say R 1 and R 2 to 0. So, if I solve a linear programming problem

with this objective function, I expect that at the final solution I will get R 1 and R 2 equal

to 0. And then that will be a solution to the original linear programming problem. 
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Approach-2 is known as two-phase simplest method. Two-phase simplex method is an

approach to handle artificial variables, whenever they are added. In this case, the linear

programming problem is solved in two phases. Note that we have assumed as of now

that a feasible basis is always given. But, in practice, it may not always be easy to spot a

feasible solution.

So, introduction of artificial variables will be necessary. Once we introduce the artificial

variables, these variables must be force to 0 during the steps of simplex method, so that

you solve the original linear programming problem, where the artificial variables has no

meaning.  So,  you have  seen  the  Big  M method,  where  you penalize  these  artificial

variables in the objective function. In the two- phase method, these artificial variables are

handled in two phases.

In the first  phase,  we solve an auxiliary linear  programming problem to either  get  a

feasible basis or conclude that the given linear programming problem is infeasible. So,

the phase one is solved either to get a feasible basis or we conclude that the given linear

programming  problem  is  infeasible.  In  this  case,  we  solve  an  auxiliary  linear

programming problem. We do not solve the original linear programming problem, but we

solve a linear programming problem related to the original programming problem, we

call  that an auxiliary linear  programming problem. And the solution to this auxiliary

linear  programming  problem  will  give  me  a  feasible  basis  for  the  original  linear



programming  problem.  And  if  I  do  not  get  a  solution  for  the  auxiliary  linear

programming problem, we conclude that  the original  linear  programming problem is

infeasible.

In the phase 2,  we solve  the  original  linear  programming problem starting  from the

feasible  basis  found  in  phase  1.  So,  in  the  phase  1,  we  solve  an  auxiliary  linear

programming  problem  related  to  the  original  linear  programming  problem  to  get  a

feasible basis, so that we can start phase 2. In the phase 1, if we do not get a solution to

the  auxiliary  linear  programming  problem,  we  conclude  that  the  given  linear

programming problem, original linear programming problem is infeasible. And we stop

our algorithm here, phase 2 will not be necessary then. But, if we get a feasible basis in

the phase 1, we start phase 2 with this feasible basis and continue with the steps that we

have demonstrated so far.
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So, just  to  give you an example,  let  us consider  the linear  programming problem as

shown. So, in the phase 1 objective is to get a basic feasible solution to the given linear

programming problem. So, in this case, we first introduce two artificial variables R 1 and

R 2, two constants number 2 and 3 respectively. And then solve and auxiliary linear

programming problem. So, what is the difference in the auxiliary linear programming

problem, the difference is in objective function.



While the given linear programming problem, the objective function is  maximized Z

equal to 3 x 1 minus x 2 minus x 3. In case of auxiliary linear programming problem, I

consider the objective function as minimize f equal to R 1 plus R 2. So, I minimize the

sum of artificial variables. Since, artificial variables are constant to be greater or equal to

0 in the auxiliary problem. You will get the minimum f when both R 1 equal to 0 and R 2

equal to 0, because R 1 is greater or equal to 0, R 2 is greater or equal to 0, both are

constant to be non-negative.

So, the sum R 1 plus R 2 will be minimum, when R 1 and R 2 are individually 0. So, the

solution of the auxiliary linear programming problem will give me a solution for which

R 1 equal to 0 and R 2 equal to 0, so that will be a feasible basic solution for original

linear programming problem. So, the solution for this will be a feasible basic feasible

solution for the given linear programming problem. 
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So, note the objective function f if the minimum value of the artificial problem is 0, then

both artificial variables are 0. And we will have basic feasible solution to the original

problem. If the minimum value of artificial problem is not 0, then at least one of the

artificial variables is positive, because artificial variables can take only 0 and positive

values. So, if their sum is not 0, it means at least one of the artificial variables is positive.

This means that the original problem is infeasible and we will stop.



So, if the solution of the auxiliary linear programming problem is such that we have R 1

equal to 0 and R 2 equal to 0, then we have a feasible basic solution for the original

linear  programming  problem.  If  the  solution  of  the  auxiliary  linear  programming

problem is such that R 1 and R 2 are not both 0, then at least one of them is positive. And

we conclude  that  original  linear  programming problem is  infeasible.  So,  he stop our

algorithm at this stage, phase 2 will not be necessary. 
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But, if the solution to the auxiliary linear programming problem is such that both R 1

equal to 0 and R 2 equal to 0, then the final Tableau of phase one becomes the initial

Tableau of S 2. Because, we will start now with the basic feasible solution obtained as a

solution of linear programming problem, auxiliary linear programming problem where R

1 equal to 0, R 2 equal to 0. But, we have to now change the objective function I will

now consider the original objective function. 

So, once we have obtained the basic feasible solution for phase 1 that means, R 1 equal

to 0 and R 2 equal  to 0 in the final solution that solution gives me the initial  basic

feasible  solution  for  phase 2.  So,  the final  Tableau  of  phase one becomes the initial

Tableau for phase 2,  but the objective function is now changed to the original  form,

which is Z maximize z equal to 3 x 1 minus x 2 minus x 3. So, the simplex method can

now be followed using our regular procedure to find the optimal solution. 
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In the standard form of linear  programming problem, all  the variables  must be non-

negative. In certain situations will find that we may have variables, which are free in

sign, but in the standard form the variables must be non-negative. When you formulate a

linear  programming  problem  from  the  statement  of  the  problem  or  analysis  of  the

physical  problem, you can find that  there are  certain  variables,  which can take  both

positive and negative values that means, there free in sign.

But, in the standard form of the linear programming problem, all the variables must be

non-negative. So, these variables, which are free in sign must be replaced by variables,

which  are  only  non-negative.  We call  such  variables  as  unrestricted  variables.  The

variables,  which are free in sign are known as unrestricted variables.  So,  the way to

handle these unrestricted variables or free variables is to express them as a difference of

two non-negative variables.

Say, a variable x 1 is free in sign. Now, I can replace x 1 as difference of let us say x 2

minus x 3, where both x 2 and x 3 are greater or equal to 0. So, there will be suitable

values of x 2 and x 3 such that x 1 can take both positive values and negative values. So,

a variable which is free or unrestricted in sign can always be replaced by difference of

two non-negative variables, so that is what we will do in the standard form of the linear

programming problem for variables, which are free in sign.
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For example, let us look at the problem shown. In this case x 1 and x 2 are greater or

equal to 0, but x 3 is free in sign. X 3 appears in objective function, x 3 appears in first

constraint, second constraint, and third constraint, so x 3 appears everywhere. So, let us

now introduce two new non-negative variables x 4 and x 5. So, both x 4 and x 5 are

greater or equal to 0 type. So, then x 3 is replaced as x 4 minus x 5.

So, everywhere the objective function in the first constraint, in the second constraint, and

in the third constraint, we replace x 3 as x 4 minus x 5. Also to put it in standard form,

we have introduced slack variables S 1, we have introduced surplus variable S 2. We

have also multiplied the third constraint throughout by minus 1, so the right hand side is

positive. And then the non-negativity restrictions apply on x 1, x 2, x 4, and x 5. Note

that  x  3  has  been  replaced  as  x  4  minus  x  5.  So,  this  is  how  we  can  handle  the

unrestricted variables. 
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So, now we will briefly talk about how to use MATLAB function linprog for solution of

linear programming problem. So, MATLAB solves a linear programming problem of the

form shown. It solves a minimization problem so, if you have a maximization problem,

take minus of the objective function. So, MATLAB solves minimize f transpose x such

that A x less or equal to b, A equality equal to b equality, and x is bounded between lower

bound and upper bound.

So, f is a vector, x is a vector, b is a vector, b equality is a vector, A is matrix, and A

equalities matrix. So, A x less or equal to b is our usual inequality constraints. And if you

have equality constraints in the linear programming problem that taken care of e equality

equal to b equality  also if  I know my decision variables are bounded between lower

bound and upper bound that can be specified. So, MATLAB solves a linear programming

problem in this form. 
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So, these are the typical syntax. So, the minimum syntax that is required is x equal to

linprog f, A, b. What is f? F, if the vector for the coefficient is the objective function. So,

if  the  objective  function  Z  equal  to  a  solving  a  minimization  problem,  let  us  say

minimize Z equal to 3 x 1 plus 2 x 2 plus x 3, then f is 3, 2, 1 vector. If you want to

maximize it,  what I will write is for maximization, I will write as minus 3, minus 2,

minus 1. A is the matrix in A x less or equal to b, and b is the constants on the right hand

side. So, b is a vector, where elements at the constants for each constant that appear on

the right hand side.
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So, this is the minimum syntax. And this solves a problem f transpose minimization f

transpose x such that A x less or equal to b. If you also have constants like A equal to b

equality, then you also use these two as arguments to linprog. So, linprog is the function

responsible  for  solving  linear  programming  problem.  In  this  calling  syntax,  you can

mention about lower bound and upper bound for x.

So, if you know x is bounded between lower bound and upper bound, you can mention it

here. Through options, you can tell linprog, what kind of algorithm it has to be it can use.

So, linprog implements various algorithms such as interior point algorithm, dual simplex

algorithm etcetera. So, you can specify using option structure, which algorithm you one

MATLAB to use.
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Let us look at this syntax. So, we have A x less or equal to b type, and you know x will

lie between let us say 10 and 100. You do not have any constants, which are of equality

type. So, what you can do is, you can put these two as null matrix. 
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Similarly, here this x is the solution to the problem. So, the x is a vector, which contains

all the decision variables as components of the vector. So, x is the solution vector. So, if

you have a linear programming problem with two variables x 1 and x 2, so x will be a

vector with component x 1 x 2. 

(Refer Slide Time: 34:07)

Now, along with this solution vector MATLAB may also return the value of the objective

function  for  the  optimal  values  of  x  1  and  x  2  etcetera,  decision  variables.  If  you



introduce include exit flag, exitflag will describe the exit conditions, and the structure

output that contains information about the optimization process.
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If you introduce lambda, it will contain the Lagrange multipliers at the solution x. So, all

these possibilities are there. There are various ways of calling the linprog and the bare

minimum is this or you can include the function value here like this. So, here you can put

f, a, b, so that will be the minimum sentence required for a problem with only A x less or

equal  to  b  type  constraints.  Otherwise,  you  go  on  adding  the  arguments  as  per  the

requirement of your problem.
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Now, let  us take a very simple example and try to explain this.  Consider  this  linear

programming  problem.  You  want  to  maximize  150  want  to  maximize  an  objective

function objective function is Z equal to 150 x 1 plus 175 x 2, constants as 7 x 1 plus 11

x 2 less or equal to 77, 10 x 1 plus 8 x 2 less or equal to 8. So, look at these two, it is also

said as x 1 less or equal to 9, x 2 less or equal to 6, but you know x 1 and x 2 are also

greater or equal to 0. So, we know that x 1 will lie between 0 and 9, x 2 will also lie

between 0 and 6. So, we can we can include this information in the calling syntax.
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So, A is defined as 7, 11 and 10, 8 look at here. So, 7 11 and 10 8, so that is how the

matrix A is defined. The b vector is the right hand side vector 77 and 80. Objective

function f objective function coefficients 150 and 175, but since I want to maximize, I

will take minus f. So, f equal to minus 150 minus 175. Lower bound is a vector for lower

bound for x 1 lower bound for x 2, so 0 0. And upper bound is x 1 upper bound x 2 upper

bound, which is 9 and 6. So, now I use this to call linprog. So, note that I do not have any

equality constants so, these two null matrixes are kept there.
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So, now if you right this, these statements on MATLAB command window or you create

M file and run, it we will get optimal solution. So, you will get a command that optimal

solution is found and x equal to 4.8889, 3.8889. So, this is the optimal solution to this

problem. You do not have to supply the lower bound and upper bound. So, you can also

try x equal to linprog f, A, b. And if you do that, you will get the same solution. 

So, this will conclude our discussion on linear programming problem here. There are

several other interesting topics related to linear programming problems, but because of

time  restrictions  we will  not  be able  to  discuss  everything.  So,  we have  chosen the

graphical method of solution, and the basic simplex methods that can be used to solve a

linear programming problem. We have also seen briefly how MATLAB can used to solve

linear  programming  problem.  You  can  now  takes  exercises  and  can  also  use  the



MATLAB solver linprog to solve linear programming problems. With this would like to

conclude lecture 45 and week 9 here.


