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Welcome to lecture 39. This is week 8 and we are talking about Introduction to Linear

Programming Problems. In our previous lectures we have introduced graphical solution

of linear programming problem. Graphical solution of linear programming problem is

convenient  only  when  you  have  two  variables.  When  you  have  more  variables,  the

graphical solution is not a convenient method of solution. In the next week we will talk

about simplex method and its various adaptations. You will see that simplest methods can

be used to solve linear programming problem of any variables.

In this lecture and in the following lecture we will lay some foundations for discussions

on simplex methods that we will do in the next week. So, in this lecture in particular we

will talk about how to express a linear programming problem in standard form.
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In general a linear programming problem may be either a maximization problem or a

minimization problem. It may include both equalities and inequalities as constraints. It

may have negative variables as well as positive variables.
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But we can convert  any of these forms into one equivalent  standard form where the

problem is always posed either as minimization or maximization problem, where all the

constraints either equalities or inequalities and all the variables are positive. So, what we

are  basically  saying  is  that  in  general  a  linear  programming  problem  may  be  a

maximization problem or a minimization problem. It may include both equalities and

inequalities as constraints. It may have some positive variables some negative variables.

But it is always possible for us to convert an LPP of any of these forms to a standard

form. And by standard form I  mean that  the linear  programming problem may be a

minimization  problem,  all  the  constraints  may  be  of  are  equality  types,  and  all  the

variables will be positive. So, it is possible for us to convert any linear programming

problem in this form where the problem may be of minimization, all the constraints will

be of equality types and all the decision variables will take non-negative values. So, we

will see how to do that.
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So,  the  standard  form of  an  linear  programming  problem with  m  constraints  and  n

variables, where n is greater than m can be represented as shown. Note that the objective

function is a linear function of the decision variables, so either maximize or minimize

often times we talk about minimization only because we know the maximization then

can be obtained by just taking negative sign of the problem. So, the objective function Z

equal to c 1 x 1 plus c 2 x 2 plus c 3 x 3 up to c n x n the objective function is also known

as cost functions.

So, c 1, c 2, c 3, c n they are all numbers associated with cost. Actually you have seen the

objective functions such as Z equal to 600 x 1 plus 300 x 2, so 600 300 where the cost

associated with the fertilizer problems. So, c 1 equal to 600, c 2 equal to 300 so on and

so forth. So, the objective function is written as a linear function of decision variables.

Objective function is also known as cost function. Then all the constraints are written as

equations a 11 x 1 plus a 12 x 2 up to a 1 n x n equal to b 1.

So, you have n variables x 1, x 2 up to x n, and you have m constraints so each constraint

correspond  to  one  equation.  So,  there  are  m  rows  of  equations  and  n  columns  of

variables. So, there are m rows of equations corresponding to m constraints and there are

n columns of variables corresponding to n variables. And a 11, a 12, a mn all these things

are coefficients.
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So, all these constraints which are of equally type. The left hand side of these constraints

can be written as a matrix A x, where x represents the decision vector x 1, x 2 up to x n

and the matrix  a represents a matrix  of m rows n columns and the elements  are the

coefficients a 11, a 12 up to a 1n, a 21, a 22, a 2n and finally, a m1, a m2, up to a mn. 

(Refer Slide Time: 09:11)

B 1, b 2 up to b m represents the right hand side part of the constraints x 1 greater or

equal to 0 x 2 greater or equal to 0 up to x n greater or equal to 0 represents non-negative

variable constraints. 
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And b 1 greater or equal to 0 b 2 greater or equal to 0 up to b m greater or equal to 0

represents non-negative right hand side constraints.  So, in the standard form we will

express the right hand side of the constraints as non-negative.

(Refer Slide Time: 10:10)

So, you can represent these equations compactly using matrix notations. Note that using

matrix  notation  we  can  present  the  linear  programming  problem  as  maximize  or

minimize Z equal to c transpose x, c is a vector n cross one vector n vector and x is also

an n vector.



So, Z equal to c 1 x 1 plus c 2 x 2 up to c n x n will be valid when we take the c

transpose and x 1 x. So, this is the c transpose vector and this is the x vector. So, the

product will be c 1 x 1 plus c 2 x 2 up to c n x n. So, this is the objective function Z equal

to c transpose x subject to A x equal to b x is n vector a is m cross n matrix which comes

from the  left  hand side  part  of  the  equality  constraints,  all  the  constraints  has  been

written as equality constraints, and b is the right hand side part of the constraints which

will be written as non-negative.

So, if any of these b is negative you have to multiply both sides by minus 1 so that the

right hand side part becomes positive, and then you have these non negativity statements

x greater or equal to 0, b greater or equal to 0. So, a is m by n matrix x is n vector c is n.

So, n vector and b is the right hand side part of the m equality constraints. So, b is m

vector.
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So, the matrix notation is again presented here more elaborately.
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Now, all linear programming problem will not come in standard form. Very often the

constraints are expressed as inequalities rather than equations in some problems not all

the decision variables may be restricted to be non-negative. There are cases where some

decision variables may be unrestricted in sign that means, there is no sign restriction on

the values of the variable that means, that variable can take positive values as well as

negative values, including 0.

So, in other words all linear programming problem will not come in standard form. So,

the first step in solving a linear programming problem is to convert it to a problem in

standard form. And in standard form we will express the linear programming problem let

us say as minimization problem or may be maximization problem. We will have all the

constraints  as  equations  and  the  right  hand  side  of  all  these  equations  will  be  non-

negative. There will not be any variable which is unrestricted in sign because we will

have non-negativity constraint on all variables.

So,  the  problem may  be  of  minimization  type  all  the  constraints  are  equations  non

negativity constraints on all the variables as well as the right hand side vector. Inequality

constraints  can  be  converted  to  equations  by  introducing  slack  or  surplus  variables.

Suppose I have a linear programming problem, where I have inequality constraints the

inequality constraint may be less or equal to type or greater or equal to type. So, I have to

convert  this  less  or  equal  to  type  inequality  constraint  or  greater  or  equal  to  type



inequality  constraint  to  equations  and  that  I  can  do  by  introducing  slack  or  surplus

variables. For example, let us consider this inequality constraint 2 x 1 minus 5 x 2 plus 4

x 3 is less or equal to 8. So, the left hand side part is less or equal to 8. So, to make the

left hand side equal to 8 I must add some non-negative value to the left hand side so that

it becomes equal to 8.

So, I add S 1 as a slack variable to the left hand side. So, my constraint becomes 2 x 1

minus 5 x 2 plus 4 x 3 plus S 1 equal to 8. So, S 1 is the slack variable which when added

to the left hand side part of the original inequality constraint will be converted to an

equality constraint the left hand side will be equal to 8. Similarly if I have a constraint of

greater or equal to type for example, 5 x 1 plus x 2 plus 6 x 3 is greater or equal to 10. 

So, to make the left hand side equal to 10 I must subtract apart from the left hand side.

So, I introduce a surplus variable S 2 and rewrite the constraint as 5 x 1 plus x 2 plus 6 x

3 minus S 2 equal to 10. Note that both S 1 and S 2 must be non-negative, so S 1 greater

or equal to 0 S 2 greater or equal to 0. So, by introducing to non-negative slack variable

or surplus variable it is possible for me to convert an inequality constraint to an equality

constraint.
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When the inequality constraint is less or equal to type I have to introduce slack variable

and when the inequality  constraint  is of greater or equal to type I have to introduce

surplus  variable.  Note  that  the  slack  variable  is  added  and  the  surplus  variable  is



subtracted.  At  optimal  point  the  values  of  this  slack  variable  and  surplus  variables

indicate whether the constraints are active that means, binding or not. Remember that a

constraint is active when it is satisfied as 0. 
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Now, how do I handle a decision variable that is unrestricted in sign? So, a decision

variable  which  is  unrestricted  in  sign  is  known as  unrestricted  variable.  Sometimes

decision variables are unrestricted in sign that means, they can take positive negative or 0

values  in  all  such  cases,  the  decision  variables  can  be  expressed  as  the  difference

between two new non-negative variables. 

Note that any variable that is unrestricted in sign can be expressed as difference of two

non-negative variables. You can choose two non-negative variables appropriately such

that their difference may be equal to 0 it may be less than 0 or it may be greater than 0.

So,  a  variable  which  is  unrestricted  in  sign that  means,  unrestricted  variable  can  be

expressed as a difference of two non-negative variables. So, this is how I can handle

unrestricted  variables.  For  example,  consider  minimize  Z equal  to  x  1  minus  2  x  2

subject to x 2 greater or equal to 0, but x 1 is unrestricted. So, what I have to do is I first

have to express x 1 as a difference of two non-negative new variables. So, I replace x 1

as x 3 minus x 4. So, I introduce two new non-negative variables x 3 and x 4 and replace

x 1 as x 3 minus x 4.



So, now, my decision my objective function Z equal to x 1 minus x 2 becomes x 3 minus

x 4 minus 2 x 2 and of course, the non-negativity constraints. Now, become x 2 greater

or equal to 0 x 3 greater or equal to 0 x 4 greater or equal to 0. Note that the new problem

formulation does not contain x 1 because x 1 has been replaced as difference of two new

non-negative variables x 3 minus x 4. 
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Let  us  now take  an  example  of  converting  a  given  linear  programming  problem in

standard form. Let us say the original problem is given as maximize x 1 plus 6 x 2 x 1

less or equal to 200, x 2 less or equal to 300, x 1 plus x 2 less or equal to 400 and x 1 x 2

greater or equal to 0. Let us say want to express this linear programming problem in

standard form and let the standard form be minimization type.

So, maximize x 1 plus 6 x 2 becomes minimize minus x 1 minus 6 x 2 x 1 is less or equal

to 200, so I have to introduce a slack variable x 1 plus S 1 equal to 200. Similarly x 2 is

less or equal to 300, I introduce slack variable S 2 and write x 2 plus S 2 equal to 300; x

1 plus x 2 less or equal to 400, again I have to introduce a slack variable and rewrite the

constraint as x 1 plus x 2 plus S 3 equal to 400, then I will have non-negativity constraint

on x 1 and x 2 as well as S 1 S 2 and S 3. 
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So, this is the standard form of the linear programming problem.

(Refer Slide Time: 24:35)

We can also express these in matrix notation. So, my decision variable vector is x 1 x 2 S

1, S 2, S 3 the cos vector is minus 1 minus 6 the A matrix can be obtained and the b

matrix  is  200,  300  and  400.  So,  the  problem  formulation  becomes  minimization  c

transpose x subject to A x equal to b, x greater or equal to 0, b greater or equal to 0. Let

us take another example.
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So, you want to write the linear programming problem in standard form the problem is

minimize Z equal to x 1 minus 2 x 2 plus 3 x 3 subject to x 1 plus 2 x 2 plus x 3 less or

equal to 9. So, it requires a slack variable. 2 x 1 plus 2 x 1 minus x 2 plus x 3 is greater or

equal to 5 it requires a plus variable; 4 x 1 minus x 2 minus 2 x 3 equal to minus 6, so

this requires multiplication, both sides by minus 1 so that the right hand side becomes

positive. X 1 is greater or equal to 0 x 2 is greater or equal to 0, but x 3 is unrestricted, so

x 3 has to be replaced as a difference of two non-negative new variables. 

So, here is the solution we first replace x 3 as x 4 minus x 5 introduce two new non-

negative variables x 4 and x 5. Introduce slack variables x 6 introduce surplus variable x

7. So, the objective function becomes x 1 minus 2 x 2, but 3 x 3 becomes 3 into x 3 x 4

minus x 5. So, 3 x 3 becomes 3 into x 4 minus x 5 because x 3 is replace as x 4 minus x

5. So, the objective function becomes Z equal to x 1 minus 2 x 2 plus 3 x 4 minus 3 x 5. 
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Similarly, we have introduce the slack variable x 6 as well as x 3 has been replaced by x

4 minus x 5; similarly both the equations. In the first equation we have introduce x is as

surplus in slack variables and in the second equation we have introduce x 7 as surplus

variable finally, the last constraint we have multiply both sides by minus 1 and then x 1,

x 2, x 4, x 5, x 6, x 7 are all greater or equal to 0 because of non-negativity constraints.

So, this is how you can convert any linear programming problem which is given in non-

standard form to standard form. 
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So, let us revisit the fertilizer problem. So, let us go to the problem as formulated.
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Minimize Z equal to 600 x 1 plus 300 x 2, 2 x 1 plus 4 x 2 is greater or equal to 16, 4 x 1

plus 3 x 2 is greater or equal to 24, and x 1 greater or equal to 0, x 2 greater or equal to 0.

We have  solved  this  problem and  we  have  seen  that  corner  point  A is  the  optimal

solution; the objective function value is minimum at point A.
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Now, let  us  introduce  slack  variables  or  surplus  variables  whichever  is  required  to

convert these inequality constraints to equality constraints. By doing that we will now



see  how  do  we  transit  from  graphical  solution  to  algebraic  solution.  This  fertilizer

problem we have solved in our previous lecture using graphical method. It is a problem

with two variables and can be very conveniently solved by graphical method. When you

have many variables  the graphical  method is  not  a convenient  way of solving linear

programming problem, and the simplex method which is basically an algebraic method

must be used.

So, let us take this simple example and let us see how this transition is possible from

graphical solution to algebraic solution. So, this fertilizer problem has to greater or equal

to type constraints.  So, I have to introduce surplus variables  S 1 and S 2.  And after

introducing these two surplus variables my constraints are 2 x 1 plus 4 x 2 minus S 1

equal to 16 and 4 x 1 plus 3 x 2 minus S 2 equal to 24. Note that x 1, x 2, S 1, S 2 are all

non-negative. Also note that when you introduce slack variables or surplus variables they

do not contribute to cost function. So, the cost in the cost function the slack variables or

surplus variables do not appear, that is why I have multiplied S 1 and S 2 by 0 there.
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Now, we have this 4 variables now, x 1, x 2, S 1 and S 2 and I want to consider algebraic

solution.  The solution space has 2 equations and 4 variables,  then how do I find the

corner  points.  The  corner  points  can  be  found by setting  two variables  to  zero  and

solving for the remaining two variables, you have two variables, you have 4 variables

and two equations we have 4 variables and 2 equations. So, you can set two variables to



zero and can solve for the remaining two variables and by doing this we can find all the

corner points.
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So, there are 6 combinations possible you can set both S 1 and S 2 equal to 0, you can set

both x 1 and x 2 equal to 0; you can set x 1 equal to 0, S 1 equal to 0, x 1 equal to 0, x 2

equal to 0 and x 2 equal to 0, S 1 equal to 0, x 2 equal to 0, S 2 equal to 0. So, all this 6

case is possible. 

And when you do this you can easily find out the optimal solution algebraically because

in that case we will have two variables, two equations. So, you can completely solve. For

example, if I set S 1 equal to 0 and S 2 equal to 0 in these two equations I have 2 x 1 plus

4 x 2 equal to 16 and 4 x 1 plus 3 x 2 equal to 24, two equations, two variables I can

easily solve to get x 1 equal to 4.8, x 2 equal to 1.6.

The question I ask is now is this solution feasible that means, does this solution satisfy

all the constraints. Yes it does, because x 1 x 2 are all greater or equal greater than 0

similarly S 1, S 2 both are 0. So, they satisfy S 1 is greater or equal to 0, S 2 greater or

equal to 0. So, solution is feasible. In fact, this is the optimal solution as you have seen in

previous lecture.

Similarly, if I set x 1 equal to 0 and x 2 equal to 0 the solution is straightforward S 1

equal to minus 16 and S 2 equal to minus 24 the solution is not feasible now, because



both S 1 and S 2 must be greater or equal to 0. Similarly you can set x 1 equal to 0 S 1

equal to 0 and can obtain x 2 equal to 4 S 2 equal to minus 12, again it is not feasible

because S 2 is negative. 

You can set x 1 equal to 0 and S 2 equal to 0 and we will obtain x 2 equal to 8, S 1 equal

to 16 it is a feasible solution. You can set x 2 equal to 0 and S 1 equal to 0 you get x 1

equal to 8, S 2 equal to 8, once again it is a feasible solution because all the constraints

are satisfied; x 2 equal to 0 S 2 equal to 0 will give you solution as x 1 equal to 6, x 1

equal to minus 4. Now, this is not feasible because S 1 cannot have negative value.

So, it is possible for me to solve algebraically these set of equations where I have two

equations 4 variables by setting two variables to 0, and solving the remaining. And I have

a 6 scenarios, and I find that 3 solutions are feasible, 3 solutions are not. 
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So, now, look at that graphical solution that we have seen in our previous lecture let us

look at all these 6 points. S 1 equal to 0, S 2 equal to 0, this is point B which is a feasible

solution with the objective function value 3360 x 1 equal to 0, x 2 equal to 0 this is the

origin and it is not feasible; x 1 equal to 0, S 1 equal to 0, the solution is x 2 equal to 4

and S 2 equal to minus 12 this is point E, this is not feasible. Also look at graphically that

this is outside the feasible region. 



Similarly, x 1 equal to 0, S 2 equal to 0 the solution is x 2 equal to 8, S 1 equal to 16 and

this is the corner point A. It is feasible and has 2400 as objective function value. In fact,

this is the optimal solution. Then x 2 equal to 0, S 1 equal to 0 the solution is x 1 equal to

8, S 2 equal to 8 and this is point C which lies within the feasible region it is a feasible

solution with objective function value 4800. 

Finally, S 2 equal to 0, S 2 equal to 0 x 1 equal to 6 and S 1 equal to minus 4 as the

solution. This corresponds to point F this is not feasible because it is lying outside the

feasible region. Note that point E, point F and the origin are outside the shaded region,

shaded region represents feasible region here. We get all these informations from the

algebraic solution as well.

Optimum solution is located at point a as usual, and whatever conclusion we have drawn

using  graphical  method  of  solution  we  draw  the  same  conclusion  using  algebraic

solution. The algebraic solution is obtained for 4 variable two equation system by taking

two variables equal to 0, and remaining for the other two variables these, equivalence

between this graphical solution and algebraic solution leads to the simplex method that

we will discuss in our previous ways lecture. With this we stop our discussion on lecture

39 here.


