
Optimization in Chemical Engineering
Prof. Debasis Sarkar

Department of Chemical Engineering
Indian Institute of Technology, Kharagpur

Lecture – 33
Unconstrained Multivariable Optimization: Gradient Based Methods (Contd.)

Welcome to lecture 33, this is week 7 and we are talking about Gradient Based Methods

for  Unconstrained  Multivariable  Optimization.  In  previous  lectures,  we  have  talked

about Cauchy’s steepest descent method and conjugate gradient method. In this lecture

we will talk about a very popular gradient based method for unconstrained multivariable

optimization  namely  Newton’s method  when  converges  Newton’s method  converges

most rapidly.

(Refer Slide Time: 00:49)

We  have  seen  Newton  Raphson  method,  when  you  talked  about  single  variable

optimization or unconstrained single variable optimizations. We will see how the Newton

methods were when we have unconstrained multivariable functions. 
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We have seen in Cauchy’s method that the negative of gradient points directly towards

the minimum only when the contours of the function is circular.

So, we have seen that if the objective function has circular contours then, the negative of

the gradient will point directly towards the minimum. So, this will happen with quadratic

functions such as x square plus y square. So, if you have an objective function like f

equal to x square plus y square, the contours will be perfectly circular and the negative of

the gradient if you consider the search direction, the search direction will point directly

towards the minimum.

But if you have an objective function like say x square plus a y square f equal to x square

plus a y square. it is also quadratic, but here depending on the value of a your contours

may be elongated and in that case if you start from any arbitrary point the negative of the

gradient will not in general direct towards the minimum part.  So, in general negative

gradient may not be a good global direction for any arbitrary non-linear function. 

Newton’s method uses information about second derivative to create search direction and

achieve  faster  convergence.  In  other  words,  information  about  the  Hessian  of  the

objective function is used, thus it is possible to take into account the curvature of the

objective function surface and identify better search direction then can be obtained using

only gradient information. So, the second derivative tells us about the curvature of the

function.



So, Newton’s method uses Hessian information or the second order information to obtain

a search direction and a better search direction is obtained and therefore, we obtain faster

convergence, but we will see later then this is true only when we start very close to the

optimal point. So, Newton’s method is a second order method because it makes use of

second order information that is Hessian of the objective function is used. 
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The basic idea of the classical  Newton’s method is to use second order or quadratic

approximation of the objective function about the current search point xk. So, if you look

at the figure, this is the function fx, this is the point xk and at point xk about the point xk,

I approximate the objective function fx by a quadratic function qx. Look at here, the

point xk is such that the quadratic approximation qx and the function fx has more or less

same minimum point. 

So, the function fx can have a quadratic approximation as shown, fx equal to f of xk plus

gradient  of fxk into del xk plus half  del xk transpose H xk del xk; that  means,  you

expand fx in terms of Taylor series about the point xk. So, x minus xk is taken as del x k.
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So, here H is the Hessian matrix. The idea is to determine the optimal solution to the

approximate  function  and  use  this  point  to  determine  a  search  direction.  If  the

approximation is of high quality the search direction will also be of high quality. 
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So,  consider  the second order  Taylor  expansion of a  multivariable  function  fx about

current point xk and you obtain the approximation as fx equal to f of xk plus gradient of f

at xk into del xk plus half into del xk into H at del xk at H into xk into del xk. So, this is



Taylor series expansion of a multivariable function fx about the current point xk and you

have retained only up to second order terms.

Now,  the  minimum  of  this  quadratic  approximation  of  fx  can  be  obtained  by

differentiating the equation with respect to each of the components of del x and equating

the  resulting  expression  to  0.  Note  that  this  is  first  order  necessary  condition.  So,

basically what we are saying is that, we can take del f del del x equal to 0. So, if I do that

I will get this, gradient of fx is equal to gradient of f xk plus H at xk into del xk.

So, basically what I am doing is del f del del x equal to 0.
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So, in that case you will get this expression and this is a first order necessary condition.

So, this we will we will set equal to 0 and you can solve for del xk which is nothing, but

xk plus 1 minus xk, which is minus of Hessian inverse into gradient both evaluated at xk.

So,  inverse of the Hessian matrix  H is  required we assume Hessian matrix  H to be

nonsingular. So, let us look at one more time.
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This is the Taylor series expansion of a multivariable function about current point xk. So,

this is a quadratic approximation of any non-linear general function fx. Now I want to

find  out  the  minimum of  this  quadratic  function,  which  is  an  approximation  of  the

original function fx. So, I make use of first order necessary condition. 

So, I take the gradient and set that equal to 0; that means, we have to differentiate the

function with respect to each of the component of del x, we have to differentiate the

function with respect to each of the component of delta x and we have to set the resulting

expressions to 0. If we do that we get the gradient of fx as gradient of f evaluated at xk,

which comes from here and Hessian evaluated xk multiplied by delta xk, which comes

from here equal to 0. 
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So, now you solve this for delta xk delta xk nothing, but xk plus 1 minus xk. So, from

here you get H at xk delta xk is equal to minus delta f at xk. So, delta xk is obtained as

minus H xk inverse delta f xk. So, this expression is obtained which is the recursive

formula for the increment of the current estimates of the minimum. 
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So, if the Hessian evaluated xk is positive semi definite the approximate function will

have a minimum at xk plus 1 equal to xk minus H inverse into gradient. So, this is the

recursive formula for Newton’s method. 
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So, this is what we just seen the update rule in case of Newton’s method, which is delta

xk equal to xk plus 1 minus xk equal to minus Hessian inverse into gradient of f, both

evaluated at the current point xk.

Note that we have solved for a vector delta x or delta xk, which has both a step length

and direction. So, delta x has both step length and direction also the search direction is

valid both for minimization and maximization, because for both the cases the gradient of

f equal to 0 the first order necessary condition we have, remember we have obtained this

equation  by  setting  equal  to  0.  Now, this  is  the  first  order  necessary  condition  for

optimality and first order necessary condition for minimization as well as maximization.
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So, the search direction is valid for both minimization and maximization. You compare

this, what we learned for one dimensional search? So, that was xk plus 1 equal to xk

minus  first  derivative  divided  by second derivative.  So,  here  you have  gradient  and

Hessian for multivariable. 

(Refer Slide Time: 16:03)

.

Now for the classical Newton’s method update rule is xk plus 1 minus xk equal to minus

Hessian inverse into gradient of the objective function.



Now, if the objective function fx is actually quadratic only one step is required to reach

the minimum point of the objective function. This is obvious because update rule for the

classical Newton’s method is obtained by considering a quadratic approximation of the

objective function. Now if the objective function given itself, is quadratic function then

the approximation is exact. So, update rule will give you the minimum in one step.

But for a general non-linear objective function, the minimum of fx cannot be reached in

one step. The minimum of fx in one step can be achieved only for a quadratic function

not for any general non-linear objective function. The Newton step change has obtained

from the classical Newton’s method update rule may be large when you are far from

optimum and thus  there  is  a  chance  of  divergence.  Thus,  we can modify  the  search

direction by introducing a statement parameter alpha.

So, instead of taking xk plus 1 minus xk equal to minus Hessian inverse into gradient of

f, I can introduce a step length parameter alpha and can write as, xk plus 1 minus xk

equal to minus alpha k into Hessian inverse into gradient of the objective function. So,

the only difference between the classical Newton’s update rule and this update rule is this

that, we have added a step length parameter.

So, this is a simple modification to the classical Newton’s method sometimes also known

as modified Newton’s method.

(Refer Slide Time: 18:39)



 By performing one dimensional line search we can choose alpha k such that f of xk plus

1 is minimized again remember the 1 dimensional line search method we can perform

one dimensional line search and can choose alpha k such that, f of xk plus 1 is minimized

if we do this it will ensure that you are moving in the same direction.

So, descent is ensure; that means, the function value at k plus 1 th iteration will be less

than the function value at k th iteration; that means, f of xk plus 1 will be less than f of

xk.
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So,  this  is  the  algorithm  for  the  Newton’s  method  in  the  step  one  we  estimate  a

reasonable starting point x 0, we define maximum number of iterations k max, we define

termination parameter epsilon a small value and we said the iteration counter k equal to

0.

So, first thing we do is we compute the gradient of the objective function at xk, which is

the current  estimate.  We check for convergence in the third step that  you can do by

looking at the norm of the gradient; that means, the magnitude of the gradient if very

small will stop, will also stop if you have exceeded the maximum allowable number of

iterations. So, if k is greater equal to k max will stop otherwise, we go to next step, in the

next step I compute alpha k the step length such that f of xk plus 1 is minimum. So, what

is f of xk what is f of xk plus 1? F of xk plus 1 is xk minus alpha k into gradient or

Hessian inverse into gradient.



So, xk plus 1 is obtained as xk minus alpha k into Hessian inverse into gradient. So, if

you do not have step length; that means, if you are using classical Newton’s method. In

this case you will find out xk plus 1 as xk minus Hessian inverse gradient xk. If you are

using step length at this step we will find out alpha k such that f of xk plus 1 is minimum

and f of xk plus 1 is f of xk minus alpha k into Hessian inverse into gradient.
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Note that xk plus 1 is nothing but this and the classical Newton’s method is obtained

when he said alpha equal to 1. Now, I again check for convergence by saying if the

current estimate is changing or not changing appreciably or not; that means, if the value

of xk plus 1 and the value of xk are very close to each other, we will stop assuming

convergence has been achieved, otherwise we will set k equal to k plus 1 and go to step

2, where we again compute the gradient at this current estimate now xk plus 1. So, this

way we proceed iteratively.
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So, let us now consider an example and solve using Newton’s method and we will use

Newton’s  classical  method;  that  means  we  will  consider  alpha  equal  to  1.  So,  you

considered a quadratic function 4 x 1 square plus x 2 square minus 2 x 1 x 2 and you

start  from x 0 equal  to 1 1. So,  this is  a quadratic  function and you expect  that the

conversation will be achieved in one step. So, we have considered alpha equal to 1; the

step length alpha equal to 1.

So, the first thing we do is we find out the gradient of the objective function at the given

starting point x 0 equal to 1 1. So, my function is 4 x 1 square plus x 2 square minus 2 x

1 x 2. So, del f del x 1 del f del x 2 are the component of the gradient, which can be

computed as 8 x 1 minus 2 x 2 and 2 x 2 minus 2 x 1, putting the value of x 0 1 1, I get

the gradient as 6 0. Find out the Hessian. Look at the objective function is quadratic

function. 

So, the Hessian will be a constant matrix and that matrix is 8 minus 2 minus 2 2. Find the

Hessian inverse and you obtained as 1 by 6 1 by 6 1 by 6 2 by 3. At this stage I would

like to inform that you can find out some software’s to find out this inverse as well. For

example, if you are using MATLAB, you define the Hessian as 8 minus 2 semicolon

minus 2 2, then you use inv stands for inverse of H return you will get the inverse of H.

So, you can also analytically find out by hand what is the inverse of H by 2 by 2 matrix

and you obtain the inverse as this.
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Now, if alpha equal to 1 xk plus 1 minus xk which is del x 0 is minus H an inverse into

gradient. So, this is obtained as minus 1 minus 1. So, delta x 0 is minus 1 minus 1. 
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So, then x 1 equal to x 0 plus delta x 0, because delta x 0 is nothing but x 1 minus x 0.

So, x 1 equal to x 0 plus delta x 0 which is nothing but 0 0; 0 0 is the optimal point of the

given quadratic function and you see we also get the convergence in one iteration. To

check that 0 0 is actually a optimal, evaluate the gradient at this point x 1 which is 0 0

and you see that we get the gradient as 0 0, which satisfies the first order necessary



condition.  So,  Newton’s method  converges  in  one iteration  for  a  quadratic  objective

function.
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So, the figure schematically shows the minimization of a quadratic function in just one

step.
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Now, we have seen that inverse of Hessian is required, but is inverse always required

Newton’s method involves inverse of Hessian matrix and this may be computationally



expensive.  For example,  in the previous case delta x 0 is obtained as minus Hessian

inverse into gradient of f and this was obtained as minus 1 minus 1.

Now, the matrix inversion is not necessarily required instead of this, we can also solve

the set  of linear  equations  that  are involved. So, this  is the equation from which the

update  rule  of the classical  Newton’s method is  obtained by applying the first  order

necessary condition to the quadratic approximation of the objective function. So, I get

Hessian into delta x is equal to minus gradient of f. So, this is a set this gives you a set of

linear equations which can be solved for delta x. So, there are two ways of solving this

equation, one is inverse of Hessian another is solutions of linear equations. 

So,  a computation of inverse of Hessian is  expensive we can solve the set  of linear

equations. 
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How let us see. Now look at this expression, Hessian into delta x equal to minus gradient

of f. So, gradient of f is 6 0. So, my right hand side is minus 6 0 Hessian is 8 minus 2

minus 2 2 and delta x have two component delta x 1 0 and delta x 2 0. So, this is set of

two linear equations in delta x 1 0 and delta x 2 0. So, if we solve I obtain as delta x 1 0

equal to minus 1 delta x 2 0 equal to minus 1.



So, delta x 0 which is delta x 1 0 and delta x 2 0 is again obtained as minus 1 minus 1,

which is same as what you obtain using inverse of Hessian. So, inverse of Hessian is not

necessarily always required instead you can solve a set of linear equations.
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Let us consider another example again a quadratic function 0.5 x 1 square plus 2.5 x 2

square. The gradient is obtained as x 1 5 x 2. Hessian will be a constant matrix because it

is a quadratic function it is obtained as 1 0 0 5 is the positive definite symmetric matrix,

my starting vector is 5 1.

So, if it is 5 1 the gradient will be 5 1, x 1 equal to 5 x 2 equal to 1, Hessian inverse will

be 1 0 0 1 by 5. So, you see that we again get the convergence in one iteration,  the

gradient will be 5 5, because 5 x 1 5 x 2. So, x 1 equal to 5 an x and next component is 5

x 2 x 2 equal to 1. So, it is 5. So, the convergence is again achieved in one iteration. 
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We can prove that Newton’s method convergence in one iteration for quadratic functions

easily, let  the quadratic function be given by fx equal to half  x transpose Hx plus B

transpose x plus C the minimum of this function fx is given by the first order necessary

condition gradient of f equal to Hx plus B equal to 0, you can solve this equation for x,

so x star equal to minus H inverse B.

Now, let us write the recursive formula for the new classical Newton’s method, which is

xk plus 1 minus xk equal to minus H inverse delta gradient of f. So, xk plus 1 equal to xk

minus H inverse Hxk plus B. So, if you simplify this you get xk plus 1 equal to minus H

inverse  B,  which  is  actually  the  optimal  solution.  So,  for  a  quadratic  function  the

Newton’s method will converge in one iteration starting from any arbitrary point.
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Newton’s method, when it converges at a faster rate than first order methods. However, it

has  the  following  disadvantages.  The  method  does  not  necessarily  find  the  global

solution if multiple local solutions exist, but this is a general characteristic of gradient

based methods.

It requires matrix inversion or solution of a set of n symmetric linear equations. Thus the

method may be computationally expensive. The method requires both first and second

partial derivatives which may not be available always. Using a step size of unity, the

method may not always converge. The method is generally sensitive to initial starting

point. 

If the initial starting point is close to the optimal point the method works very well, but if

the starting point is very far from the optimal solution,  the Newton’s method can go

either  uphill  or  downhill;  that  means,  it  can  go  in  the  direction  of  minimization  of

function or the maximization of function. You remember the search direction is valid for

both  minimization  and  maximization  of  the  function.  So,  the  method  is  generally

sensitive to initial starting point. With this we stop our discussion on Newton’s method in

today’s lecture.


