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Welcome to lecture 32. This is week 7 and we are talking about Gradient Based Methods

for  Unconstrained Multivariable  Optimization.  In  the previous  week, we have talked

above  Cauchy's  Steepest  Descent  Method.  In  this  week,  we  will  talk  about  another

gradient based methods name as Fletcher Reeves Conjugate Gradient Method, but before

that we will make some comments about Cauchy's Steepest Descent Method.

(Refer Slide Time: 00:56)

Cauchy’s Steepest Descent method zigzags its way towards the optimum point. If you

look at the figure, it will be clear that when you start from x 0 and go to x 1, then go to x

2 and then, go to x 3, you take zigzag path. This is because each step is orthogonal to

previous step. In other words, each step is perpendicular to the previous step.

So, the entire sequence of paths will look like a zigzag way. This can be very easily

shown  that  Steepest  Descent  method  zigzag  its  way  towards  the  optimum  point.

Remember, the update rule of Steepest Descent method which is x k plus 1 equal to x k

plus alpha k s k, where alpha is the step length and s k is the search direction that is

gradient of the function at current estimate x k.



Alpha k is obtained by minimizing the function f x k plus 1 which is f x k plus alpha k x

k and you know that to determine this alpha will say df d alpha equal to 0 and solve the

resulting equation. Now, upon differentiation we get gradient of f at xk plus 1 into s k is

equal to 0. Note that x k plus 1 plus alpha k x k is same as x k plus 1.

So, upon differentiation we get that gradient of f at x k plus 1 into s k equal to 0. That

means the search direction which is a vector, so the product of search direction vector at

k-th step and the gradient vector at k plus 1 step is equal to 0. That means they are

perpendicular to each other.

Now, the search direction at k plus 1th iteration is nothing, but the minus of the gradient

vector at k plus 1. This is what we know from Steepest Descent Method. So, we can

write the search direction vector at k plus 1 into such direction at k-th step is equal to 0.

That means two consecutive search directions are orthogonal to each other. So, that is

why you see that the Steepest Descent method zigzags its way towards the optimum

point.

Remember, this result is true only if the line search is performed exactly. That means the

value of the alpha k is determined exactly.

(Refer Slide Time: 05:05)

So, what is  the role of step length in Gradient  based methods.  The update rule of a

Gradient based method requires a step length controlling the amount of gradient updated



to the current point at each iteration because we have seen that x k plus 1 is x k plus

alpha k and s k. So, this is the gradient and this is the step length.

So, the step length decides how much will  move in the direction of search direction

vector. A too large step length can lead to divergence; a too small step length will take

much longer time to converge. That is why we need an optimum step length, so that we

get convergence and we get convergence in minimum time. There are two methods to

find the step length which are commonly used; the backtracking line search and the exact

line search. The big backtracking line search is an in exact line search and the exact line

search finds the alpha k exactly, whereas backtracking or in exact line search finds an

approximate value of the step length.
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So, this is what happens when I use a step length that is too large. You see the search

direction starts oscillating when you take too small step size. It takes too long time to hit

the  minimum.  The  minimum  is  shown  by  this  term  and  we  are  showing  a  two

dimensional functions contours. Similarly when you find an appropriate step size or step

length, you will get convergence and you will get convergence in not so many iterations.

(Refer Slide Time: 08:05)



We want to make another comment on Steepest Descent method. This is about scaling.

Let us consider two quadratic functions as shown in the figure. The first one is x 1 square

plus ax 2 square and you can see the contours are all perfectly circular. Now, if I consider

the second function which is x 1 square plus ax 2 square then depending on the value of

the parameter, the contours may be circular or may be elongated. If a equal to 1, this

equation reduces to the first equation and the contours becomes circular, but if I take

large value of a, the contours will be elongated as shown.

Now, you can note down that the first function x 1 square plus x 2 square if I start let us

say from this point, you see that the search direction directly points to the minimum is a

two-dimensional function and x 1 square plus x 2 square. So, the minimum is 0, but for

the second function x 1 square plus ax2 square you see that it  takes longer time for

Steepest Descent Method to go and hit the minimum at x 1 equal to 0, x 2 equal to 0.

Hey sorry the function value equal to 0.

So, what we learn is that for a quadratic function whose contours are circular, the search

direction in case of steepest method will directly point towards the minimum, but if the

contours are elongated. Then, the convergence will be slow because in that case such

direction does not directly point to the minimum starting from any arbitrary point. Speed

of convergence is related to the condition number of the Hessian matrix, the condition

number  of  a  symmetric  positive  definite  matrix  is  the  ratio  of  largest  to  smallest

eigenvalues.



The condition number of a symmetric positive definite matrix is the ratio of largest to

smallest  eigenvalues,  condition number may generally  be defined as the ratio  of this

singular values, but in case of symmetric positive definite matrix, the eigenvalues and the

single value, singular values are same. So, the condition number of a symmetric positive

definite  matrix  is  the  ratio  of  largest  to  smallest  eigenvalues  for  a  well  conditioned

Hessian matrix. The condition number is close to unity. If the condition number is close

to unity, the contours will become more circular and the steepest descent method will

work very well because in that case, the search direction will directly point towards the

minimum.

(Refer Slide Time: 12:22)

Consider the function x 1 square plus ax 2 square. Compute the Hessian and you get the

matrix 2 0, 0 2a. So, the eigenvalues are 2 and 2a. So, the condition number is 2a by 2

equal to a. So, when the condition number is 1. That means a equal to 1, the convergence

is fastest.

(Refer Slide Time: 12:59)



So now, again consider the function x 1 square plus ax 2 square. So, now if I perform

appropriate scaling and if it is possible for me to redefine the function x 1 square plus ax

2 square as y 1 square plus y 2 square in terms of new variable y 1 and y 2. Then the

contours of this new function y 1 square plus y 2 square will be circular and Steepest

Descent method will work very well.

(Refer Slide Time: 14:55)

So, it is possible to do it here. Note that if I redefine y 1 equal to x 1 and y 2 equal to root

a into x 2, then the function f equal to x 1 square plus x 2 square can be written as g

equal to y 1 square plus y 2 square. Note that, for this function, the condition number of

the Hessian matrix will be 1, because for this function, the Hessian will be 2 0 0 2. So,



condition number is the positive symmetric definite matrix, symmetric positive definite

matrix. So, the condition number will be 2 by 2 equal to 1 and the contours will become

perfectly circular and the Steepest Descent method will work very well.

In general how do I perform scaling? So, to perform scaling we define the new variable y

and take a diagonal matrix T and scale, the variable as x equal to T y. So, in terms of new

variable y, I can scale the variables as x equal to T y where T i have to choose as a

diagonal matrix. So, the new function will be now say g of y equal to function of T and y.

So, the gradient of this new function gradient g can be computed as transpose of T into

gradient of old function f.

Similarly, the Hessian of the new function can be computed as Hessian of g equal to

transpose of T into Hessian of old function f into matrix T. So, you have to choose the

matrix T as a diagonal matrix, such that the Hessian of the new function g has condition

number close to unity.

(Refer Slide Time: 16:46)

Let us now make some more comments about Steepest Descent Method because Steepest

Descent method works very well. When we start far from optimal point, it  has linear

convergence.  If  an  exact  search  direction  is  made at  each  iteration,  two consecutive

search directions will be orthogonal to each other and the Steepest Descent method will

zigzag its way towards the optimum.



In most implementations,  the search directions  are scaled such that the length of the

search vector is 1. So, for minimizing a function we can scale the search direction by

dividing  the  gradient  by  the  norm of  the  gradient.  So,  instead  of  taking  the  search

direction s at k-th iteration as minus gradient of f at x k, we take s k equal to minus

gradient of f at x k divided by norm of the gradient of f at x k. If the objective function is

not convex, we can find local minima while minimizing, but if the objective function is

convex, you know that local minima is also a global minimum. We may also get stuck at

a saddle point, but these are the characteristic feature of any Gradient based method.

Now, we will talk about Conjugate Gradient Method.

(Refer Slide Time: 18:41)

The Steepest Descent method works well when you start far from the optimal point, but

the convergence becomes very slow. As the optimal point is approached, the convergence

characteristics of the Steepest Descent method can be improved greatly by modifying it

into a conjugate gradient method. This was first  proposed by Fletcher and Reeves in

1964.

The Conjugate Gradient method can be considered as a conjugate directions method that

uses  the  gradient  of  the  objective  function.  Any  minimization  method  that  uses  the

conjugate directions is quadratically convergent. Such methods will minimize a quadratic

function of n variables in n steps or less.



(Refer Slide Time: 19:37)

Powell's Conjugate Direction method requires n single variable search per iteration. We

then find new conjugate direction at  the end of each iteration.  Therefore,  to find the

minimum of a quadratic function in general, Powell's method requires n square single

variable search. But if, we use gradients of the objective function, we can set up a new

conjugate direction after every single variable search and hence, we can achieve faster

convergence.

(Refer Slide Time: 20:13)



The Conjugate Gradient method combines current information about the gradient vector

with that of gradient vectors from previous iterations to obtain the new search direction.

The proposed search direction for this  method is  a linear combination of the current

gradient  and the previous  search direction.  So, the search direction  becomes a  linear

combination of the current gradient and the previous search direction.

So, the search direction S at k plus 1th iteration is minus gradient f at k plus 1 plus norm

square of gradient at k plus 1 divided by norm square of gradient f at k-th iteration into

search direction at k-th iteration. So, basically the search direction at the current step is a

combination of the current gradient and the previous search direction. So, this can also

be written as minus gradient f plus gradient transpose into gradient f divided by gradient

f transpose into gradient f. The numerator 1 is evaluated at k plus 1th iteration that is x k

plus 1 and the denominator is evaluated at x k and the search direction is evaluated at x

k, that means search direction from the previous step.

So, in case of Conjugate Gradient method, the current search direction is always a linear

combination of the current gradient and the previous search direction. So, the difference

with the Steepest Descent method is this that in case of Steepest Descent method, the

search  direction  is  the  current  gradient  direction  negative  of  the  current  gradient

direction,  but  we  add  this  information  from the  previous  step  in  case  of  Conjugate

Gradient method.

Note that the Conjugate Gradient method is a first order method. We are still using first

order informations only. First partial derivatives are involved. This method represents a

major improvement over Steepest Descent method with only a marginal increase in the

computational effort? Note that only this information above the previous search direction

is included in the current gradient information. So, there is a marginal increase in the

computational effort, but there is a major improvement over steepest descent method.
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So, where is the algorithm for Conjugate Gradient method? In the step 1, we start with an

arbitrary initial point X 0. Step 2 who said the first search direction as s 0 equal to minus

gradient of F at X 0 which is same as Steepest Descent method. In the step 3, we find the

point X 1 according to the usual relation X 1 equal to X 0 plus lambda 0 into s 0. So, at

lambda 0 is the optimal step length in the direction s 0. That means we need to perform

the line search.

We set k equal to 2 and go to the next step. In the step 4, we find the gradient of F. Let us

consider  this  is  k-th  step.  So,  you find  the  gradient  of  F at  X k and set  the  search

direction for k plus one step as s k plus 1 equal to minus gradient at X k plus 1 plus norm

square  of  gradient  evaluated  at  X  k  plus  1  divided  by  norm  square  of  gradient  F

evaluated at k into search direction at X k. So, such direction at X k plus 1 is the linear

combination of the gradient at X k plus 1 and the search direction at X k.

Now, compute the optimal step length lambda k in the direction s k by doing line search

and find the new point as X k plus 1 equal to X k plus lambda k sk. If the convergence is

achieved, we will stop. To understand the convergence is achieved or not, we have to

check the magnitude of the gradient. So, if the norm of the gradient is very small, we will

assume that the convergence is achieved will stop otherwise we will set the value of k

equal to k plus 1 and go to again step 4, where we find the gradient and then, the search

direction and proceed.
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So,  this  figure  schematically  shows the  functioning of  Steepest  Descent  method and

Conjugate  Gradient  method.  Note that,  the Steepest  method takes  zigzag path to  the

optimal point and takes many more iterations compared to Conjugate Gradient method.

(Refer Slide Time: 26:57)

Now, let us take an example. We are considering a quadratic function two variables and

we will  solve,  that  means  we will  minimize  this  function  using  Conjugate  Gradient

method starting from the point X 0 which is 0 0. So, in the iteration 1, the gradient of the

objective function is evaluated first. So, you take the del f del x 1 and del f del x 2. They



are evaluated as 1 plus 4 x one plus two x two which is del f del x 1 and minus 1 plus 2 x

1 plus 2 x 2 which is del f del x 2.

So, put the value of x 1 equal to 0 and x 2 equal to 0 and we get the value of the gradient

at X 0 as 1 minus 1. So, initially the search direction is minus of gradient at X 0. So, the

search direction is minus 1 1. Note that the gradient is 1 minus 1. So, the search direction

is minus of the gradient, so minus 1 1.

(Refer Slide Time: 28:26)

To find X 1, we now need to find the optimal step length lambda 0. For this we minimize

f of X 0 plus lambda 0 into S 0 with respect to lambda 0.

So, let us now evaluate f of X 0 plus lambda 0 S 0. You know X 0 equal to 0 0 and S 0 is

minus 1 1. So, this becomes f of minus lambda 0 lambda 0. So, we evaluate f of minus

lambda 0 lambda 0 by putting X 1 equal to minus lambda 0 and X 2 equal to lambda 0 in

the original expression for f and we get that as lambda 0 square minus 2 lambda 0.

So, f of minus lambda 0 lambda 0 equal to lambda 0 square minus 2 lambda 0.
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So, to find out the optimal lambda 0, we will set d d lambda 0 of f which is lambda 0

squared minus 2 lambda 0 is equal to 0. So, you get as 2 lambda 0 minus 2 equal to 0 and

then, we get lambda 0 optimal is 2 by 2 equal to 1.

So, we get lambda 0 star as 1. So, once we get that, we can find X 1 as X 0 plus lambda 0

into S 0. So, X 0 is 0 0 lambda 0 have obtained as 1 s 0 is minus 1 1. So, X 1 is obtained

as minus 1 1. So, find out the gradient of f at X 1 and we can find the gradient s minus 1

minus 1. So, now we proceed to the next iterations. So, you obtain gradient of f at X 1 as

minus 1 minus 1.
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So, in the iteration 2, we first now find the search direction S 1 which can be obtained as

a linear combination of the gradient at X 1 and the search direction at X 0. So, let us first

find out the norm square at of f. The norm square of gradient of f at X 0 and norm square

of gradient f at X 1 which are obtained as 2 and 2. So, you can now find such direction at

X 1 which is obtained as 0 2. So, again minimize f of X 1 plus lambda 1 s 1 because you

have to find out the optimal lambda 1. Now, this is obtained as 4 lambda 1 square minus

2 lambda 1 minus 1.

So, we have to now take dd lambda 1 of 4 lambda 1 square minus 2 lambda 1 minus 1

equal to 0 and if we do that, we will get lambda 1 star is equal to point 2 5 or 1 by 4.
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So, X 2 is obtained as X 1 plus lambda 1 into S 1 and it is obtained as minus 1 1.5. In

fact, X 2 equal to minus 1 1.5 is the optimal solution. To check that this is the optimal

solution let us find out the gradient at this value X 2 and we find that the gradient is 0 0.

So, gradient 0 is the first order optimality criteria if you remember. Also find out the

norm of the gradient of f at X 2 which is 0. So, S 2 will be 0. So, there is no search

direction to reduce the function value further. So, it shows that x to minus 1 1.5, that

means X 1 equal to minus 1 and X 2 equal to 1.5 is the optimal solution. So, this is how

the Conjugate Gradient method works and you see that we had a two variable quadratic

function and we could get the optimal point in exactly two iterations.



With this we stop our discussion on Conjugate Gadient Method here.


