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Unconstrained Multivariable Optimization: Gradient Based Methods

Welcome to lecture 31. This is the first lecture of week 7. In week 6 we have discussed

direct search methods for Unconstrained Multivariable Optimization. In this week 7 we

will talk about gradient based methods for Unconstrained Multivariable Optimization. In

case of direct search methods you have seen that the optimization methods do not use

information on gradient,  they were only on the information of value of the objective

functions.

The gradient method based methods make use of informations on gradients, and when

this gradient information is available the gradient mesh methods are much faster in terms

of  convergence  compared  to  direct  search  methods.  There  are  some methods  which

makes use of only gradient information, there are some methods which makes use of

gradient information as well as hessian information that means, first partial derivative as

well as second derivatives are required. Accordingly we call them first order methods or

second order methods.
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So, what we will  plan to  cover in  this  week is  Cauchy’s method,  Newton’s method,

Marquardt  method  and Conjugate  gradient  method.  So,  today  after  giving  a  general

concept of gradient based methods, we will talk about Cauchy’s steepest descent method.

So, Cauchy’s method is also known as steepest descent method.

(Refer Slide Time: 02:16)

A quick review of gradient of a function, the gradient of a function is an n component

vector given by del f del x 1, del f del x 2, del f del x 3 up to del f del x n. So, given an

invariable function or objective function you have to take the partial derivative of the

objective  function  with  respect  to  each  variable,  and the  vector  thus  obtained  is  the

gradient of the function.

Now, there is an important property of gradient if we move along the gradient direction

from any point in n dimensional space the function value increases at the fastest rate. So,

gradient always points to the direction in which objective function value is changing at

the fastest rate. Hence the gradient direction is called the direction of the steepest ascent

however; the direction of steepest ascent is the local property and not a global property.

Gradient  based  methods  use  derivative  information  of  the  function  to  determine  the

search direction,  when derivative  informations  are  available  these methods are  much

faster compared to the direct search methods.
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So, you can classify the gradient based methods as first order methods or second order

methods. First order methods use only gradient of the objective function to determine the

search direction for example, Cauchy’s steepest descent method.

Second  order  methods  use  both  gradient  and  hessian  of  the  objective  function  to

determine the search direction. For example, Newton’s method is a second order method.

So, the overall classification of the unconstrained multivariable optimization methods are

direct  search methods and gradient based methods.  Sometimes you also call  gradient

based methods as indirect methods. So, all the techniques available for unconstrained

multivariable optimization that we have discussed in this course are categorized into two.

For  example,  direct  search  methods  and  indirect  search  methods  or  gradient  based

methods.

The gradient  based methods are again categorized as first  order methods and second

order methods. First order methods use only gradient information, second order methods

use gradient information as well as hessian information.
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Now, it  may  not  be  always  possible  to  have  analytical  derivatives  of  the  objective

function,  and  you  often  have  to  use  numerical  methods  to  compute  gradient  of  the

objective function. If the objective function is a simple mathematical expression most

likely we will be able to compute the derivatives and gradients analytically, but suppose

the value of the objective function is available to you after doing some simulations. The

simulations may involve the solution of model equations it may be a large number of set

of equations and after the simulations of all the equations you are able to compute the

objective function value.

Analytical computation of the gradient it is not possible under such circumstances, and

under such circumstances you have to make use of numerical computation of gradient.

So, the slide shows you how you can compute first partial derivative as well as second

partial derivatives of a function using central difference formula. There are several other

formulas also to compute numerically, these first partial derivatives as well as second

partial derivatives what is show here is central difference formula.

Note, del f del x i equal to f x i plus delta x i minus f x i minus delta x i by 2 delta x i. So,

we can realize that for computation of first derivative it is necessary that we evaluate the

function twice. So, the computation of first derivative requires two function evaluations

with respect to each variable. So, with respect to each variable we need to evaluate the



objective  function  twice.  So,  for  n  variable  objective  functions  we will  require  2  n

function evaluations for computing the gradient vector.

(Refer Slide Time: 09:34)

Now, here is the general step of any gradient based method. So, all the gradient based

methods can be represented by a sequence of general steps as shown on the slides. So, in

the first step we start with a reasonable estimate of optimal point, say I am minimizing a

function. So, I start with a reasonable guess of the minimum point that is x 0 for me that

is my starting point. So, we set the iteration counter k equal to 0.

In step 2, we compute search direction s. So, we need to find out the direction in which x

will change. Step 3 we check for convergence if convergence is achieved we stop else we

go to step 4. In step 4 we compute step size alpha in the direction s. Once I have the step

size in the direction s I can update x as, x k plus 1 equal to x k plus alpha k s k that

means, the improved guess for the minimum point is equal to the current estimate of the

minimum point plus step size into the direction vector.

After this you again go to step 2 where we further find the search direction for the next

step, then we proceed until we reach convergence. Now, this is a general steps for all

gradient based methods. So, we have different methods which makes use of gradient

information, they differ in determining the step length alpha and the search direction s.

So, different methods determine the step length, alpha and the direction s differently.



(Refer Slide Time: 13:07)

We have talked about descent direction before let us quickly review one more time what

do you understand by descent direction. Consider an unconstrained optimization problem

minimization of f x, x can take any real value. At any kth iteration the next point that

means, at iteration number k plus 1 is obtained as x k plus 1 equal to x k plus alpha k into

s k, where s k is the search direction and alpha k is the step length and we choose a

positive step length.

If the direction s k is a descent direction the function value at k plus 1th iteration will be

less than the function value at kth iteration. So, if s k is descent direction f of x k plus 1

must be less than f of x k. We know x k plus 1 is x k plus alpha k s k. So, you can

substitute this here and we write as f of x k plus alpha k s k is less than f of s k, if s k is a

descent direction. Now, I can perform a Taylor series expansion for f of x k plus alpha k s

k and if I retain only the first order terms I write f of s k plus alpha k gradient of f at x k

into s k that must be less then f of s k which is same as this.

So, this part comes from Taylor series expansion of this. Now, look at this expression

you have on both sides the function value at x k. So, this inequality says you must have

gradient f at x k into s k must be less than 0. Note that alpha the step length is positive.

So, if s k is the descent direction the dot product of the function at x k with the s k must

be less than 0.
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Now, since the gradient vector represents the direction of steepest ascent the negative of

the gradient vector denotes the direction of steepest descent. So, we discussed few slides

back that the gradient vector always points to the direction in which the function value is

changing at the fastest rate. So, that is why it is known as direction of steepest ascent.

So, now, if I take the negative of the gradient vector that must point to the direction in

which the function value is decreasing at the fastest rate. So, the direction of negative

gradient is the direction of steepest descent now. The magnitude of the vector gradient of

f  dot  s  for  a  descent  direction  s specifies  how descent  the search  direction  is  if  the

magnitude is high is more decent. Now, if I said the search direction s as negative of the

gradient  of  the  objective  function  the  dot  product  of  the  gradient  with  the  search

direction  s will  be maximally  negative thus the search direction s equal  to minus of

gradient is called steepest descent direction.



(Refer Slide Time: 18:47)

Now, let us talk about Cauchy’s steepest descent method. So, this is the first gradient

based method that we will discuss. It is one of the simplest method, and this method is

very efficient when I start my search away from the minimum point. But as we get closer

and closer to the minimum point the rate of convergence decreases. So, as we discussed

that all the gradient based methods differ in determination of the search direction and in

the determination of step length, otherwise the general structure is more or less same for

all the gradient based methods. So, in case of Cauchy’s steepest descent method we take

the negative of the gradient as the search direction.

So,  the search direction  at  any point  is  the negative  of  the gradient  of the objective

function. So, search direction at any point is the negative of the gradient of the objective

function.  At each iteration we will update the guess values for minimum using usual

expression x k plus 1 equal to x k plus alpha k s k, where s k is set as negative of the

gradient of the objective function at  that point. Now, how to determine the step size

alpha? We determine alpha such that f of x k plus 1 is minimum along gradient direction

using an appropriate unidirectional search method.

This minimum point becomes the current point and the search is continued from this

point.  So, alpha k is determined such that f of x k plus 1 is minimum in the search

direction and we can find this out using an appropriate unidirectional search method. So,

once  this  minimum point  along  the  search  direction  is  obtained  the  minimum point



becomes the current point and the search is continued from this point. So, what you do is

at this point again you find out the gradient and update using the usual equation x k plus

1 equal to x k plus alpha k s k.

The algorithm will stop when the magnitude of the gradient vector becomes very small

or there is no improvement in the objective function value. Note that improvement at

every iteration is guaranteed this is because we are talking about a decent method. So,

when the search direction is a descent direction the objective function value will keep on

decreasing with each iteration, but when I say that we can stop the algorithm when there

is no appreciable change in the objective function value. As long as we are using decent

direction there will  be changes in the objective function value the objective function

value  will  keep  on  decreasing.  But  the  amount  by  which  it  will  decrease  will  be

extremely small when the magnitude of the gradient becomes very very small and that is

what happens when we approach the minimum point.

(Refer Slide Time: 23:48)

So,  this  is  the  algorithm for  steepest  descent  method.  In  the  step  1 we start  with  a

reasonable  guess of the minimum point  we call  it  x 0,  set  the maximum number of

iterations k max, set the termination parameter epsilon a small value, set the iteration

counter k equal to 0.

Compute the gradient of the objective function at the given point let us say I am at k th

iteration. So, this x k we check for convergence by checking if the magnitude of the



gradient vector is less than the tolerance then the small termination parameter epsilon or

not. So, the gradient vector is very small we stop, otherwise else you check whether the

number of iteration has exceeded the maximum allowable number of iterations k max or

not. So, if the number of iterations exceeds the maximum allowable number of iterations

we stop, otherwise we go to next step which is step 4.

In step 4, we compute the search direction alpha k such that f of x k plus 1 which is f of x

k minus alpha k and gradient of f at x k is minimum and this you can do using any

unidirectional  search  technique.  Now, again  we can  check  if  the  guess  value  is  not

changing much we can stop, otherwise we set k equal to k plus 1 and go to step 2 where

for the new or for the current  estimate of the minimum point we again compute the

gradient and continue with the procedure.

(Refer Slide Time: 26:29)

These are some interesting features of Cauchy’s steepest descent method, improvement

at every iteration is guaranteed because we are talking about a decent method. Cauchy’s

method works well when the starting point x 0 is far away from the optimum point. As

the current point becomes close to the optimal point the magnitude of the gradient vector

becomes very small. Thus, the new point created becomes very close to the current point.

This slows down the rate of convergence.
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Now, let us take an example to understand how Cauchy’s steepest descent method works.

So, we have taken a two variable function x 1 minus x 2 plus 2 x 1 square plus 2 x 1, x 2

plus x 2 square we want to minimize it starting from the point 0 0. So, x 1 equal to 0, x 2

equal to 0.

So, let us start iteration number 1. At this step you can define the termination parameter

epsilon which is a very small quantity may be 10 to the power minus 4, the starting point

is given you can also define the maximum number of iterations that we wish to perform.

So, next we calculate the gradient of the objective function at the given point 0 0. So, this

is the objective function. 

So, the gradient vector will be del f del x 1 del f del x 2. So, there computed as 1 plus 4 x

1 plus 2 x 2 which is del f del x 1 and minus 1 plus 2 x 1 plus 2 x 2 which is del f del x 2.

So, find out the value of the objective function at 0 0 so set x 1 equal to 0 x 2 equal to 0

and  you  get  1  minus  1  as  the  gradient  vector.  So,  negative  of  this  vector  will  be

considered as the search direction. So, s 0 is minus del f 0 is minus 1 1; compare this

two. So, I have the search direction.
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So, once I have the search direction I can find out the estimate of the minimum in the

next iteration that is iteration number 1. So, I can find out x 1. So, how do I found out X

1? X 1 will be found out as X 0 plus step length into S 0. So, this is our scheme to update

the estimate for the minimum point.

So, this is same as x k plus 1 equal to x k plus alpha k s k. So, that alpha which is the step

length has to be found out and we need to find out the optimal step length. Let us call we

call the step length lambda, the optimal step length let us call lambda 0 star. So, what we

do is we have to minimize the function f X 0 plus lambda 0 star S 0. So, this function

becomes this put X 0 equal to 0 0, lambda 0 star and s 0 is minus 1 1. So, this becomes

minus lambda 0 lambda 0.

So,  after  putting X 1 equal  to  minus lambda 0 X 2 equal  to  lambda 0 in  the given

objective function we get f equal to or the function equal to lambda 0 square minus 2

lambda 0. So, this has to be made minimum with respect to lambda 0. So, by for that

what we have to do is I have to take the derivative of the function with respect to lambda

0 and set that equal to 0. So, d f d lambda 0 is d lambda 0 and f at lambda is minus

lambda 0 lambda 0 is nothing, but lambda 0 square minus 2 lambda 0. So, this will be

equal to 0. So, this gives you 2 lambda 0 minus 2 equal to 0 which gives you lambda 0

equal to 1. So, the optimal value of lambda 0 which is being represented at lambda 0 star

is equal to 1. So, once you have this we can find out X 1 easily, X 1 equal to X 0 plus



lambda 0 star is 0 so 0 0, plus lambda 0 star is obtained as 1, S 0 was minus 1 1. So, X 1

is obtained as minus 1 1.
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So, now, let us take the gradient of the function at this value X 1 minus 1 1, we see that

the gradient evaluated at X 1 is minus 1 minus 1. So, it is not 0 0. So, thus X 1 is not

optimum and we must proceed to the next iteration.
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So, in the iteration 2 we will set the search direction as negative of the gradient at X 1.

So, note the gradient was the gradient at X 1 is minus 1 minus 1. So, the search direction

will be minus of this gradient so which will be 1 1.

Again I have to minimize f of X 1 plus lambda 1, S of 1 which becomes equivalent to

minimizing 5 lambda 1 square minus 2 lambda 1 minus 1 with respect to lambda 1. So,

again take the derivative with respect to lambda 1 set that equal to 0 and you get lambda

1 star as 0.2 the optimal value of the step length. Once I have that I can update X as X 2

equal to X 1 plus lambda 1 star into S 1. So, put X 1 which is minus 1 1 lambda 1 star is

obtained as 0.2 and S 1 is 1 1. So, X 2 is obtained as minus 0.8, 1.2.

Now, again evaluate the gradient at this point X 2 and we check that the gradient is 0.2

minus 0.2. Note that the gradient is not 0. So, you must proceed to the next iteration, you

remember  at  stationary  point,  the  gradient  vector  will  be  0 the  first  order  necessary

condition for optimality. So, gradient is not 0 neither very very small. So, you repeat this

process go to iteration number 3 and check if the gradient is 0 or very close to 0. So, you

need to repeat this process until the optimal point minus 1, 1.5 is obtained. But this two

iterations shows you how to compute in each steps. So, each step is repetition of these

steps.
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With this we stop lecture 31 here.


