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Welcome  to  lecture  3  week  1.  In  week  1  we  are  talking  about  Introduction  to

Optimization. In today’s class we will talk about examples of optimization in various

engineering applications. So, basically we will go through some engineering applications

where optimizations can be applied or are applied. 

So, we will try to find out or we will try to understand what is the scope of optimization

in  such  problems.  In  today’s  lecture  we  will  not  go  into  the  details  of  problem

formulations,  we will  do  that  in  the  next  week.  But  in  today’s lecture  we will  take

different engineering applications and I will try to understand the scope of optimization

technique for these engineering applications.

(Refer Slide Time: 01:24)

So, today’s topic is examples of optimization or examples of engineering applications

optimization in engineering applications.
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Theory  of  optimization  finds  applications  in  all  branches  of  engineering.  Various  of

applications may be broadly divided into four categories as follows, design of system

components  or  entire  systems.  So,  there  are  applications  which  will  lie  under  the

category of design of system components or the optimal design of the entire system. 

Planning and analysis of existing operations engineering analysis and data reduction; So,

engineering analysis of data and data reduction, control of dynamic systems, which leads

to problems known as optimal control problems or dynamic optimization. This is another

important class of problems in chemical engineering.

So, although this classification is not unique, all the possible engineering applications of

optimization  can  be  broadly  classified  or  broadly  categorized  in  these  four  different

areas.  So,  design  of  system  component  or  entire  system,  planning  and  analysis  of

existing operations, engineering analysis and data reduction, control of dynamic systems

which is optimal control or dynamic optimization.
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So, let us now take few examples and let us try to understand the scope of optimization

or how the optimization can be applied in such problems or in such applications.

First let us take a simple example of optimal design of a can. So, we want to design a

can.  So,  there  are  2  decision  variables,  which  we can  vary  and which  we  can  find

optimally. One is  the diameter  or radius of the can another is  height of the can is a

cylindrical can. 

We are told that the height of the can be 7 centimetre to 12 centimetre and the radius may

be anywhere between 3 centimetre to 7 centimetre. Here is a restriction on the design; we

have to design the cylindrical can such that it will hold at least 500 m l of liquid. So,

what is the scope of optimization, how the optimization will help.

So, the question that we are asking is what dimensions for the cylindrical can will use the

least amount of material. And we can minimize the amount of material by minimizing

the area. Because may be a metal sheet will be used to make the can to fabricate the can.

So, what dimensions of the cylindrical can will be used which will hold at least 500 ml

of liquid and will use minimum quantity of material so, that cost is minimum.

So, basically we want to find out the optimal values for the radius r and the height h that

holds at least 500 ml of liquid; that means, the volume of the can is at least 500 ml and

the  cost  is  minimum.  So,  there  is  scope  of  optimization  because  we  can  find  out



minimum we can find out optimal values of r and h, which will minimize the cost. And

to minimize the cost we can make use of the criterion that we have to minimize the area.

So, there are 2 areas curved area curve surface area as well as area of both the ends. So,

we can find out the total area as follows. So, the objective function can be written as area

which will minimize. So, area is a function of see a both r and h how. Area of 2 ends are

both pi r square. So, 2 pi r square. So, this is the area of 2 ends and the lateral area or the

curved surface area is 2 pi r h. 

So, the objective function is A equal to 2 pi r square plus 2 pi r h. So, we have to find out

the optimal value of r and h. So, that a is minimum, but we have a constraint; that means,

the restriction on the design which says that the can must hold at least 500 ml of liquid.

So, we calculate volume V as pi r square h and p i pi r square h must be greater or equal

to 500. So, that is the constraint. 

We have bounds on decision variables r and h. So, r will lie between 3 and 7 the height h

will lie between 7 and 10. So, we have been able to identify the objective function the

constraint as well as the bounds. So, thus the optimization techniques can be found out to

find out the values of r and h that minimizes  the total  area a. So, there is scope for

optimization.
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Next let us talk about optimal insulation thickness. You are familiar with this optimal

insulation thickness; you have started this in your heat transfer course. Let us first talk

about economic criterion. You know that addition of insulation will lead to reduced heat

loss.

Loss of heat is equivalent to loss of money. So, the addition of insulation should save

money through reduced heat loss, but the insulation material is expensive. So, we can go

on adding insulation  and by doing so,  we will  be reducing the heat  loss  and saving

money on that, but at the same time we will be spending more because you have to buy

more and more amount of insulation.

So, if you make a plot of cost versus insulation thickness as shown in this figure, you

will see that as you increase the insulation thickness, the cost of lost energy will reduce

because you will be reducing heat loss, but the cost of insulation will increase. So, if we

add this 2 you will get the total cost curve and that total cost curve will show a thickness

at which the total cost is minimum. So, at x star, at x star the cost is minimum. So, x star

is the insulation thickness. So, there is scope of optimization.

(Refer Slide Time: 11:02)

Let us now talk about the critical insulation thickness. Again you are familiar with this

you have started this  in  your  heat  transfer  course consider  insulation  is  being added

around a cylindrical tube and you want to reduce the heat loss. So, what you do is, you

add insulation around the cylindrical  surface.  So,  if  you go on adding the insulation



around the cylindrical surface,  two things are happening. Look at this  schematic;  the

inside circle corresponds to the inner pi and this is the insulation. So, let us consider r i as

the radius of the pi and r is the radius of the pi after you have put insulation.

So, centre of the pi to the outer surface of the insulation that is r. So, as you go on

increasing the insulation r increases. Now, to reduce heat loss we have to reduce we have

to increase the total resistance. To reduce heat loss we have to increase the resistance

assume increase. As we increase the insulation thickness as we increase the insulation

thickness, the conduction resistance increases the conduction resistance is given by this

you are adding more material. So, the conduction resistance increases.

But as you go on increasing the insulation material, you are also increasing the surface

area  the  outer  surface  area.  So,  the  convection  resistance  is  decreasing.  So,  with

increasing  r, the conduction  resistance  is  increasing,  but  the convection  resistance  is

decreasing.

So, the conduction resistance increases with increasing thickness of insulation, but the

convection resistance decreases with increasing insulation thickness. So, if you add up

we will get how the total resistance changes with change in insulation thickness, and you

see that there is a minimum at let us say r c which I call as critical insulation thickness.

So, up to critical insulation thickness between 0 to r c up to critical insulation thickness if

you go on increasing the insulation, your resistance decreases. Beyond critical insulation

if you add insulation the resistance increases. So, there is a good scope of optimization

here, you need to know what is the critical insulation thickness. 

So, up to critical insulation thickness, when I am adding the insulation my resistance

decreases. So, heat loss increases. Say it may be desired for electrical wires, where you

would  like  to  dissipate  the  heat.  But  beyond critical  insulation  if  you go on adding

insulation, the total resistance increases. So, heat loss decreases. So, it may be desired for

let us say putting insulation around steam pipes.

So, the knowledge of critical insulation thickness is extremely important and that can be

found out by optimization technique.
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Let us talk about chemical reactor design a series reaction. So, this shows a typical batch

reactor this also shows a typical batch reactor, but here, here we do not have a jacket

around it, here we have a cooling water jacket around it by can by that you can control

the temperature of the reactor.

Let us say inside this reactor, a series reaction takes place where the reactant A goes to B

and  B  goes  to  C  the  reaction  depth  constants  are  given.  The  material  balances  on

concentration of A B C are given they are simple mass balance equations. If we consider

non isothermal operation, we have to write an energy balance equation non isothermal of

if  you  have  non  isothermal  operation;  that  means,  we  are  also  considering  the

temperature changes. 

So,  you have a cooling water jacket  around the batch reactor  and you can write  the

energy balance equation. The reactions may be exothermic so, you want to maintain a

temperature within the reactor. So, the heat needs to be taken away and that can be done

by circulating cooling water around the jacket.

So,  the rate  of  term change of  temperature  inside the reactor  can be written  as heat

generated due to reaction A to B, heat generated due to reaction B to C and heat removed

by the cooling water. So, T J is the temperature of the cooling water in the jacket and T is

the temperature of the reactor. So, these red constants these mass balance equation these



energy balance equation constitute the process model. I want to maximize the amount of

B at final time why is optimization required.

Let us try to understand intuitively, how the concentration of A B and C will change. So,

I plot concentration versus time A goes to B. So, A only decreases C only forms. So, C

increases, but what about B? If you look at a time at very early time, there will be little

amount of B because not much of A has been converted to B, but if you wait for very

long again you will get less amount of B, because most of the B has now converted to C. 

So,  the  concentration  of  B  will  vary  as  it  will  increase  reach  maximum  and  there

decrease. So, there will be a batch time corresponding to which there will be maximum

amount of B. So, T star is that optimal time which can be found out optimally. So, again

there is a good scope of optimization here.

(Refer Slide Time: 20:50)

Another  example  from  chemical  reactor;  this  time  instead  of  series  reaction  let  us

consider there is parallel reaction. Let us look at a reactant, which can form a desired

product D, and an undesired side product U in parallel reactions like this, undesired side

product usually needs to be separated.

Now, higher conversion of A to D will reduce the separation cost, but higher conversion

of  A to D will  require  increased  cost  of  reactor. So,  as the conversion increases  the

separation  cost  decreases  because  you  need  to  separate  less,  but  as  the  conversion



increases the reactor cost also increases. So, if you add this up, you have the total cost

and  total  cost  shows  a  minimum  corresponding  to  a  conversion,  which  is  optimum

conversion. So, you can find out optimally the optimum conversion at which the total

cost is minimum. So, we have to see that there are conflicting natures. So, while you are

increasing conversion your separation cost decreases, but reactor cost increases. So, there

will be an optimal conversion at which the total cost will be minimum.

(Refer Slide Time: 22:44)

Let  us  next  talk  about  a  blending  problem,  a  refinery  blending  problem.  There  is  a

refinery, which makes two types of petrol’s premium petrol and regular petrol by mixing

5 different types of crude oil or raw oil. The premium petrol and the regular petrol have

octane rating. So, the octane rating must not exceed 93 for premium petrol and 85 for

regular petrol their prices are given. Similarly each of this crude oils octane rating are

specified, their price also specified and also in how much quantity these crude oils are

available that are also specified.

So, the question is, how much of premium petrol and how much of regular petrol should

be produced so, that the profit is maximized. So, this is an important problem important

real life problem, which can be solved using optimization techniques and later on you

will see that these class of problems leads to linear programming problem, where all your

objective function will be linear and all the constants will also be linear.
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This is an example of linear programming problem. It will be clear to you later, but let us

say you start thinking along the following direction.

You consider X i j litre of type i crude oil to make type j petrol. So, there are 2 types of

petrol  premium petrol  and regular  petrol.  Let  us  call  premium petrol  as  let  say  one

regular petrol 2. So, X i j represents litre of type i raw oil to make type j petrol. So, x 11

x 1 2, x 1 x x 11, x 21, x 31, x 41, x 51 these are the quantities of the crude oils, which

will make premium one petrol. So, 70 times x 11, 80 times x 21, 85 times x 31, 90 times

x 41, 99 times x 51 divided by x 11 plus x 21 plus x 31 plus x 41 plus x 51 will not

exceed 93 this is a constraint.

Similarly, you can find out all the constraints you see all that constraints are becoming

linear in nature. Now, once you have these amounts, you can also have similar amounts

for regular petrol type. Since the prices are given you can find out the profit. So, that will

also be a linear equation. So, this will be an example of linear programming problem

later on we will see how to solve it.
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Another linear programming problem, which is of real life interest is the diet problem let

us say you have to prepare a food mix so, that the daily requirement is satisfied and let us

consider a very simple example, we are considering only 2 feed oat and corn. 

The calories per 100 gram for oat and corn are given, minerals that are present in oat and

corn are given, vitamin per unit vitamin in unit per 100 gram for both the feed are given,

the cost are also given. And the daily minimum requirement is specified; that means,

2000 calorie per day is required, 1000 unit of mineral is required per day and 5000 unit

of vitamin is required per day. Let us say this is this will be used as a cattle feed and the

cattle’s required these calories per day, these minerals per day, these vitamin per day.

So, the question I ask is how many gram of oat and how many gram of corn should be

fed to minimize the cost. In the previous blending problem it was maximization of the

profit, here it is the minimization of the cost. 

So, you want to optimally, you want to find out optimal amount of oat and corn, which

when mixed will minimize the cost, but at the same time the daily minimum requirement

for the cattle as specified will be fulfilled. So, this is a diet problem again, this is a linear

programming problem and important linear programming problem.
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Next we will talk about non-linear regression. You know the ideal gas law P v equal to

RT, you are also familiar with Redlich-Kwong equation, which is given as P equal to RT

by v minus b minus a by T to the power half v into v plus b. In this equation there are 2

parameters  a  and b.  From a series  of  available  experimental  pressure versus volume

versus temperature data for a particular gas, we can find the unknown constants a and b

by non-linear regression for that gas.

So, what is a scope for optimization? So, we do series of experiments 1 2 3 and then up

to  n.  At  different  temperature  and  volume  we  have  the  pressures.  So,  these  are

experimental data and this pressure can also be calculated at these temperature and these

volumes  using  this  Redlich-Kwong  equation.  So,  the  difference  between  the

experimental pressure and the calculated pressure is the error. 

So, we want to minimize the error square. So, objective function will be the error square

summed over all experimental data. Why square otherwise if you do not take square, you

will get a wrong impression because some error may be positive some errors may be

negative they can cancel each other out and they will not reflect the reality.

So, the better estimate will be you take error square. So, error square summed over all

experimental data that is the total error, that must be minimized. So, you find out the

optimal values of small a and small b which are the parameters of these, by minimizing



this. So, this is there is a good scope of optimization and this is our non-linear regression

can be done.
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A close related problem is the material balance reconciliation. Suppose the flow rates

entering and leaving a process are measured periodically, we want to determine the best

value for the stream A in kilogram per hour, from the three hourly measurements of B

and C is a steady state operation. 

So, A and C stream enters, B stream leaves we have three hourly measured data. So, I

want  to  estimate  A,  you know A plus  C is  equal  to  B because  it  is  a  steady  state

operation.  So,  we can make use of  this  to  formulate  an objective  function and then

optimization techniques can be used. So, let us see how.
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So, if the estimate of A is mass flow rate is M A. So, M A plus 20.6 will be equal to

101.4, similarly M A plus 21.1 minus 99.7 plus again similarly for the third data. So,

ideally this would be 0. So, you have to minimize these objective function. So, that will

be the best estimate for A mass flow rate of A.

(Refer Slide Time: 33:15)

Now, will  briefly  talk  about  2  special  class  of  problems,  known as  optimal  control

problems or dynamic optimization problems.



First let us talk about optimal reactor temperature. Consider a well mixed batch reactor

where species A and B react  to form a product C. The reaction is  dependent  on the

reactor temperature,  and let  us say you can vary the temperature at  our will.  So, the

temperature influences the outcome of the reaction. So, the product how much of product

will be formed will be depending on the temperature and the temperature can be varied.

So, the question we ask is, what should be the temperature of the reactor temperature will

the  temperature  be  constant  or  we have  to  follow of  specific  particular  temperature

profile. So, if I plot temperature versus time, will the temperature be constant throughout

or maybe we can take let us say some kind of temperature profile, which will maximize

the amount of C. 

So,  here  basically  the  optimal  solution  is  a  function  of  time,  you  are  finding  out

temperature versus time function, which maximizes the product concentration at final

time, such problems are known as dynamic optimization problems.
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Still another example from batch distillation column; you can maximize the production

of distillate of a desired purity over a fixed time duration, by controlling the distillate

production rate with time. So, let us say the distillate production rate is say u t. So, u the

production rate is the function of time. 



So, how the production rate has to be changed with time so, that we can maximize the

production of distillate of a desired purity over a fixed duration of time; this is also a

dynamic optimization problem or optimal control problem. Such problems also appears

in plug flow reactors, such optimization problems can also be formulated in fed batch

fermentation processes so on and so forth. 

With this we will conclude our lecture 3 here.


