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Welcome  to  week  2  lectures  9;  in  week  2,  we  are  talking  about  performance

characteristics of instruments and data analysis part one in your previous lecture we have

talked about generalized mathematical model for instruments, we have seen what will be

the form of the equation for zero order instrument, first order instrument, second order

instrument. 

We started with an ordinary differential equation and by setting n equal to 0 1 and 2 we

obtain the differential equations for zero order instruments, first order instruments and

second order instruments, we also learned little bit of Laplace transformation technique

for solution sub ordinary differential equation, by taking the Laplace transformation you

can find out the transform function of instruments; which basically is y s by x s, where y

s represents the output of the instrument as Laplace transform quantity divided by x s

which is the Laplace transform quantity of input.

So, transform function is y s by x s which is the Laplace transform quantity of output

divided by Laplace transformation of input. So, we have also seen what are the, what are

the transform functions? For zero order instruments, first order instrument and second

order instruments. So, in this lecture we will take examples of zero order instrument, first

order instrument and also briefly talked about step response of first order instrument.



(Refer Slide Time: 02:10)

So, today’s topic is example analysis of zero order instrument, example and analysis of

first  order  instruments  and  we  will  also  talk  about  step  response  of  first  order

instruments.

(Refer Slide Time: 02:31)

Recall  that;  the  generalized  mathematical  model  for  an  nth  order  instrument  is

represented  by  this  nth  order  ordinary  differential  equation.  So,  for  zero  order

instruments I written only this as the model for the zero order instrument.



A displacement measuring potentiometer can be considered as an example of zero order

instruments. This is a displacement measuring potentiometer, the resistance wire has a

sliding contact  and this  is  excited with a voltage E b,  if  the resistance is  distributed

linearly along the length of the wire we can relate the output with this input as this. So,

basically you can write e 0 into L is equal to E b into x i or e 0 equal to x i by L into E b

and E b by L is K or the static sensitivity, so the zero order displacement measuring

potentiometer assumes the model equation as output equal to static sensitivity K into x i

which is the input, this is x i.

Note that; this is the sliding contact so it can go up come down accordingly x i will

change, accordingly output voltage will change and output voltage is E b by L into x i

and E b by L is static sensitivity K. Now look at this equation; this equation does not

have any differential  terminal  in it,  it  is a pure algebraic  equation we say zero order

instrument show perfect dynamics,  because they are cannot be any time delay or lag

because there is no time term involved in it, so output will immediately follow input. 

(Refer Slide Time: 06:09)

As this equation suggests E b; if I give this output this input sorry if I give this input

immediately the output will be static sensitivity multiplied by this quantity, there will not

be  any time delay  or  lag,  so output  becomes  the static  sensitivity  which  is  constant

multiplied by the input. 



So, this instrument can be considered as an ideal instrument, because there is no time

delay or there is no time lag output immediately follows input and output is a constant

multiple  of  input,  that  constant  multiple  is  the  static  sensitivity  for  displacement

measuring potentiometer this becomes; E b by L, where E b is the exciting voltage and L

is the length of the wire.

(Refer Slide Time: 07:46)

Another example of a zero order linear instrument is a wire strain gauge in which the

change in the electrical resistance of the wire is proportional to the strain in the wire. 

(Refer Slide Time: 08:01)



Now, let  us talk about first  order instruments;  like all  first order systems,  first order

instruments are characterized by capacity to store mass or energy and a resistance. So, in

all first order systems or all first order instruments you will be able to identify two terms;

one  is  capacitance,  another  is  resistance,  so  capacitance  represents  the  instruments

capacity to store mass or energy and there will also be a resistance associated with this

flow of mass or flow of energy. 

So, these two terms; capacity to store mass or energy and resistance will  always the

presenting any first order instrument, now what will represent capacity? And what will

represent resistance? Will depend on the particular instrument we are talking about, but

in all first order instruments there will be these two terms. The first order instruments

show a time delay in their response to changes in input, so first order instruments will

have  a  time  constant,  you  have  seen  in  the  mathematical  model  for  a  first  order

instrument there was two terms; one was, case static sensitivity and another was time

constant  tau  which  has  unit  of  time,  so this  time  constant  is  a  measure  of  delay  in

response this indicates in some sense speed of response.

The time constant tau is a measure of the time delay and the time constant is product of

the resistance in the capacitance, as I told you that all first order instruments will have a

capacitance and will have a resistance and the time constant of this first order instrument

will  be  the  product  of  this  capacitance  and  resistance.  Thermometers  thermocouples

anemometer that measures wind speed are all  examples of first  order instruments,  so

when I talk about thermometer and thermocouples;  I consider bear thermometers and

bear thermocouples,  what it  means that? Sometimes thermometers and thermocouples

are put inside a protective cover, to protect it from the effect of measuring environment. 

So,  in  that  case  basically  the  combined  system  becomes  two  first  order  systems

connected in series, because thermometer itself is a first order systems and then you have

a protective cover around it which is like a say; sealed tubes sealed at one in and inside

the tube you have put the thermometer or thermocouple, so this tube or this protective

tube or sealed itself works like a first order system, because it also has capacity to store

say thermal energy in case of thermometer and there will also be a resistance associated

with this flow of the energy. 



So, a bear thermometer or bear thermocouple; that means, the thermometer and thermo

couple without the protective cover is the first order instrument,  but if I consider the

thermocouple  or  the  thermometer  is  put  inside  the  protective  tube  then  together  it

becomes to first order systems connected in series. So, the overall responsible will then

be second order in nature.

(Refer Slide Time: 12:09)

So  now;  recall  this  equation  representing,  the  generalize  model  for  any  nth  order

instrument. So, for first order instrument I will written only the first order terms so this

represents the model for first order instrument. So, first order linear instrument has an

output which can be represented by a first order linear differential equation.

So  this;  a  1,  a  0  are  the  combination  of  systems  parameters  and  their  constant

coefficients. So, if we consider input as say x t, so I put x t in place of u n this becomes

the first order systems mathematically equations a Laplace transformations and then if

you take inverse Laplace transformation, we will get the output corresponding to this

input.



(Refer Slide Time: 13:38)

So, let us consider; I am giving a unit step input to my instrument. So, my instrument a

first order instrument you can consider it to thermometer at t equal to 0 I give a step

input of magnitude 1, so I called it a unit step input. So, the input to the instrument up to

this was let say 0 and at time t equal to 0 this is my start of the experiment, so at time t

equal to 0; I suddenly make the input as 1 and keep it there, this is the step input so this

can be represented as x t equal to 1 for all time t greater than 0 you can also write x equal

to 0 for all time t less than 0, this becomes sufficient, so x t equal to 1 for all time t

greater than 0.

You have seen that Laplace transformation of this is; 1 by s, so put 1 by s in place of X s

I have done it and then if I take inverse of this I get this, which is the output of the

instrument for unit step input. Remember b 0 by a 0 represents static sensitivity and a 1

by a 0 represents time constant, so this equation becomes this; y t equal to K into 1 minus

e to the power minus t by tau, so this equation represents the output of an instrument for

a step input. So, this is the output of a first order instrument for a step input, what kind of

step input? Step input of magnitude 1. So, if I give a step input of magnitude a; this will

be multiplied by the magnitude of the step input.

So, y t equal to K into a is 1 minus e to the power minus t by tau represents the output of

a first order instrument, when I give a step input of magnitude a to this input. So, given a

step input of magnitude a; to the instrument this equations represents the output of the



instrument, so how the output of the instrument changes with time? Can be obtain from

this  equations,  so  if  you  know the  time  constant  of  an  instrument  if  you know the

sensitivity, we will be able to find out the response of the instrument from this given

equation.

(Refer Slide Time: 17:12)

Once again; this is the response of a first order instrument for unit step input, now if I

make a plot of y versus K; so y versus K and again it versus t by tau, so I am plotting y t

by K for t by tau. Note that: if I am given a unit step input this is the response, what will

be the ultimate or the final response? That can be obtained for very large t. So let us put t

equal to infinity, if I do that this terms becomes 0, so the final response becomes K for

unit step input. 

So, y t by K becomes the dimensionless; measure of the input, similarly t by tau is the

dimensionless time because time tau as time constant. So, if I make a plot of y t by K

versus t by tau I will get a response like this for a unit step input. Note that: the initial

rate of rise was this, but this initial rate of rise is not maintained throughout. The output

of the instrument increases and asymptotically matches with this value, also at t by tau

equal to 1; that means, at t equal to tau the output that you get; will be 63.2 percent of the

final response, so this is the characteristic of a first orders instruments, that at time t

equal to tau you will achieve the 63.2 percent of the final response.



So, by plotting the output of a first order instrument let us say thermometer, i have my

thermometer versus radiator particular temperature then I suddenly give a step input to

the thermometer or in or any input of a any magnitude a, I give to the instrument and

then record that thermometers reading so but looking at the 63.2 percent of the response

final response because I know what will be the final response, I will be able to measure

or  estimate  the  time constant.  So,  this  method gives  me a way to measure  the time

constant of any first order instrument by looking at it is response, so just look at the 63.2

percent of the final response and the corresponding time is the value of the time constant

tau.

So, this was the response of a positive step input. So, my x ray thermometer was a 20

degree Celsius and suddenly put it to boiling water which is 100 degree Celsius. So, this

is a positive step input of magnitude 100 minus 20 equal to 80, I can also bring back the

thermometer from 100 degree Celsius boiling water 220 degree Celsius temperature. So,

in that case it will be a negative step input of the same magnitude, because 20 minus 100

is minus 80 so in that case the response will be this. So, this is the falling step input

response of response of falling step input or negative step input and this is the response

for the positive step input or rising step input. The characteristics will be same; at time

constant tau, you will achieve the 63.2 percent of the final response and you can also find

out the final response from here. 
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So now, will  take  a  physical  example  of  a  first  order  system.  So,  let  us  consider  a

mercury thermometer; T is missing here, a mercury thermometer is a first order system

of mercury thermometer is a first order instrument what we should do now is; will write

down or will develop the mathematically equation for the mercury thermometer and will

see that we obtain a first order ordinary differential equation. So, mercury thermometer is

a  temperature  measuring  instrument.  So  for;  obviously, to  develop the  mathematical

model for the thermometer you have to write energy balance equation. So, let us write

conservation of energy during any time T, for this thermometer.

So, you have this thermometer ordinary mercury in glass thermometer, put into a beaker;

let us say, there is water or some fluid in the beaker whose temperature is represented by

T i which is a function of time. So, thermometer bulb receives this thermal energy, so let

us there is  a mercury inside it  undergoes restricted  thermal  expansion,  so it  goes up

mercury goes up through this capillary and from the scale attached to the or graduated on

the  thermometer  you  will  be  able  to  find  out  the  temperature.  So,  let  us  say  the

temperature of the fluid is T i and the temperature of the thermometer or the thermometer

bulb is T t m.

So, now the energy balance equation is; heat in, to the thermometer minus heat out from

the thermometer equal to change in energy content of the thermometer. So, let us look at

the bulb of the thermometer because that is where this energy exchange is taking place,

so heat in to the mercury ball heat out from the bulb and change in energy content of the

bulb of the thermometer. Let us makes certain assumption that there is no heat loss, let us

also assume; that the physical properties of the thermometer fluid or mercury does not

change with time, so density of the mercury does not change with time specific it is

capacity does not change with time so on and so forth all physical properties remain

constant.

Then there  is  one important  assumption;  which  you make is  as  follows,  that  all  the

capacity to store thermal energy recites in the bulb and all the resistance to flow this

thermal energy also recites here. So, I am doing lumping of capacitance and resistance,

so  this  is  not  as  lumping  of  parameter,  I  do  not  consider  that  this  capacitance  and

resistance varies in space. 



So, the capacitance or the capacity to store the entire thermal energy is located in one

place in the bulb, the same thing about the resistance so all the resistance to flow to this

thermal energy recites in the bulb, so this is known as lumping of the parameters it leads

to lumped parameter models. If I consider that there is a variation of capacitance and

resistance in space, then we will not get an ordinary differential equation, but we will get

a partial differential equation, so our mathematical model will be more complex but this

lumping of this parameter is a reasonably good approximation here. 

Now, let us use this notations; x 0 equal to displacement from the reference mark, let say

you have a reference mark 0 here right so this becomes x 0, K e x is the differential

expansion coefficient of the thermometer fluid, V b is the volume of bulb, A c is the cross

sectional area of the capillary tube, T t f is the temperature of the fluid in the bulb, we

discussed it previously we consider it uniform throughout. Now as I told you; the bulb in

the  mercury  receives  thermal  energy  and  undergoes  restricted  thermal  expansion,

because of that a pressure is developed and the mercury moves up through this capillary.

So,  what  moves  up;  through  this  capillary,  that  amount  of  balloon  comes  from the

expansion of the mercury due to change in temperature, so I can write down of mass

balance equation. So, the amount of mercury in the capillary initially it was below, the

mercury was at this reference level now I have mercury for this x 0 length of capillary.

So,  the amount  of  mercury that  is  represent  there  is  x  0 into  A c that  volume,  A c

represents cross sectional area of the capillary tube, so A c multiplied by x 0 represents

the volume of the mercury in this capillary, so that will be equal to K e x into volume of

the bulb into T t f, why T t f? Basically T t f minus 0, initially it was a 0 let say it was not

temperatures showing 0 temperatures. So, the change in temperature is T t f. 

So, the x 0 into A c has to be equated to volume expansion coefficient time’s volume,

time’s temperature  change look at  the  unit  here.  So,  x  0 into A c which is  volume;

becomes K e x, V b into here or I can rearrange in and write as x 0 equal to k e x into V b

into T t f by A c, we will make use of this equation later. 

Now, the heat input can be written as this; which represents heat transfer coefficient, area

of heat transfer this is the area of the bulb and the temperature difference thermal energy

goes  from  the  liquid  in  the  bigger  to  the  bulb,  so  liquid  temperature  is  t  i  bulb

temperature is T t f, so t i minus T t f represents the temperature difference, there is no



heat loss so there is not heat out, so heat in minus heat out is represented by this term,

change in energy of thermometer comes from m c p d t; that means, mass of the mercury

into specific heat of the mercury into the temperature difference.

(Refer Slide Time: 32:26)

So, rho into V b is the mass of the mercury, rho is the density of the mercury V b is the

volume of the bulb, so there is the volume of the mercury, so rho V b is the mass of the

mercury into specific ate into temperature difference. So, let us equate this with this; that

is what I am doing here and if I rearrange, I get this look at here this is a first order

differential equation, which relates T t f with t i this is output and this is input. So, rho V

b  c,  U  A b  these  are  all  the  system  parameters.  So,  combinations  of  the  systems

parameters are those; a 1, a 0, b 0 those kind of terms.



(Refer Slide Time: 43:57)

So, this is the equation we just derived; I can also write this equation in terms of; d x 0 d

t, so this equation output is the temperature of the thermometer of the bulb temperature

of the bulb of the temperature indicated by the thermometer that is related to this input t

i. Now since this temperature of the bulb of the temperature indicate by thermometer is

also related to the x 0, which is the mercury level in the capillary and they are related by

this  equation;  I  can  also replace  t  f  making use of  this  equation  and can  write  this

equation. So, again this is also a first order ordinary differential equation which can be

rearranges as this and finally as this.

So, if you look at this equations these entire thing becomes the time constant tau and

these entire thing becomes the static sensitivity k.
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So, this is the equation we just obtain these I told you that this is tau time constant and

this is the statistics sensitivity K. Now these are two important design parameters, you

want the mercury thermometer to have low time constant because if the instruments time

constant is low the speed of response will be high, imagine that at one time constant you

will get 63.2 percent of the final response, so smaller the time constant value faster is the

response larger is the time constant value slower or slaggy is the response. So, you want

my thermometer to have a low time constant, now I know which combinations I know

the combination of the parameters that gives me time constant tau, so I can appropriately

tune those parameters to design a thermometer you have low time constant look at how

time constant is rho C V b by U A b.

So, you can reduce tau; by reducing, the terms that are appearing in the numerator that is

rho C and V b rho is the density of the mercury, C is the specific heat of the mercury and

V b is the volume of the bulb, we can also increase U and A b to reduce time constant.

Now rho and C mercury density and heat capacity at the properties of the mercury, so

they cannot be change independently once you have choose the mercury once you have

choose chosen mercury or any other thermometer fluid the density under specific heat is

fixed. So, I cannot independently lower down this I can independently choose this, so I

choose a  thermometer  fluid with small  product  rho C,  so the density  times  the heat

capacity should be lower.



I can also reduce V b; that is, the volume of the bulb. 

So, volume of the bulb when I reduce it is also reduce the area of the bulb, but you want

to  reduce  the  volume of  the  bulb  and you want  to  increase  the  area  of  the  bulb to

decrease tau, so you have to take a suitable V b by A b, also if you look at the sensitivity

expression; if I reduce the volume of the bulb, the sensitivity will be decreased. So, if I

want to in if I want to lower down the time constant which will give me first response by

decreasing the volume of the bulb, this also decreases the sensitivity. So, if I want to

reduce the time constant to obtain the faster response by decreasing the bulb; that means,

I design a thermometer with small thermometer bulb that will give me the first response,

but it  will  also decrease the sensitivity  of the instrument.  So, the increased speed of

response is traded off for lower sensitivity. 

(Refer Slide Time: 41:01)

Consider this equation for the thermometer that taken the sensitive K equal to 1 here,

take the Laplace transformation the rearrange this; you will get the Laplace transform

output versus input relationship, if you take inverse you will get this as output in time

domain. Note that:  the form of the equation that you have got, this equation you got

previously as well.
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So, this is the equation for thermometer response; if I give a step input of magnitude 1 or

inverse step input my response is this, at T equal to infinity it matches with this. If I gives

us step input of this; I am expecting the output finally to be this, my response goes like

this  which  asymptotically  matches  with  this  line  at  T equal  to  infinity. At  one  time

constant value I get 63.2 percent of this final response. So, for large time constant you

see the response will be slow for small time constant the response will be fast. So, we

will stop here.


