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Welcome to  week – 2,  lecture  –  8.  In  our  previous  lecture,  we have  talked about  static

characteristics. In today’s lecture, we will talk about dynamic characteristics and also we will

talk about general mathematical models for instruments.

(Refer Slide Time: 00:36)

So, this is today’s topic, desirable and undesirable dynamic characteristics and generalized

mathematical model of an instrument.
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So,  we  start  with  dynamic  characteristics  of  instruments.  We  have  defined  dynamic

characteristics as a set of criteria that are used when you measure a quantity that is rapidly

varying with time. So, these are the attributes associated with dynamic measurements. So, we

will  talk  about  4  different  dynamic  characteristics,  speed  of  response,  lag,  fidelity  and

dynamic error.

Speed of response is a desirable dynamic characteristic. So, we want our instrument to have

this characteristics whereas, lag is an undesirable dynamic characteristics. Similarly, fidelity

is a desirable dynamic characteristics and corresponding undesirable dynamic characteristics

is dynamic error. So, if speed of response is good, lag will be less similarly for this dynamic

characteristic.
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So, speed of response is defined as the rapidity with which an instrument responds to changes

in the measured medium. So, lag is opposite to that. So, this is delay in response.
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Fidelity is degree to which an instrument indicates the changes in measured variable without

the dynamic error; that means, it  is a representation of faithful reproduction and dynamic

error  is  defined as  the  difference  between the  true  value  and the  value  indicated  by  the

instrument under dynamic environment.
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Now, we will talk about generalized mathematical model of an instrument. So, the question

you ask here,  is  it  possible  to express the working of an instrument  in other  words is  it

possible to relate the input and output of an instrument by a set of mathematical equations.

Usually, a differential  equation is used so that you can get output for a given input with

respect to time.

So, an ordinary differential equation of nth order with constant coefficients can be considered

to  be  a  generalized  model  of  an  instrument.  So,  this  is  our  apotheosis  that  an  ordinary

differential  equation  of  nth  order  with  constant  coefficients  can  be  considered  to  be  a

generalized model for an instrument. So, if we consider any general instrument we assume

that an ordinary differential equation of nth order with constant coefficients will be able to

relate the relationship that exists between the input to the instrument and output from the

instruments. So, let us first write down an nth order general ordinary differential equation

with constant coefficients.

So, solution of this equation for known input will give us the dynamic response. So, let us

define before we write the ordinary differential equation of nth order. Let us define; q 0 as

output from the instrument, q in is the input to the instrument and a, b these are the constant

coefficients. Essentially, this will be the combinations of system parameters. So, different

instruments will have different a’s and b’s.
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So, let us now look at this a general nth order ODE. q 0 is output. So, the differential equation

on the left hand side represents the output and the differential equation on the right hand side

represents the input. So, an nth order differential equation represents the output and similarly,

an mth order differential equation represents the input. Note that, both input and output are

functions of time that is why we are representing output by any nth order differential equation

and input by any mth order differential equation.

So,  if  now, I  consider  that  this  black  box  represents  instrument  and  input  goes  to  this

instrument let us say instrument may be a step input which says that input was steady up to

time t. At time t, I have given a sudden change in the input values. So, this is the input values

axes and this is time. So, at time t, I have given a step input of this magnitude.

So, q in represents this function. So, the mathematical function representing this step input is

basically q in and output q 0 t will be the solutions of this differential equations, when we put

this q in which is the mathematical representation of the step input and we know the values of

a’s and b’s which are the constant coefficients of the ordinary differential equations. So, this

is differential equation, it requires approximate appropriate initial conditions for its solutions.

So, this is a general scheme for mathematical modeling of an instrument.

You basically relate output and input by a general ordinary differential equation with constant

coefficients. So, different instruments will have different sets of these constant coefficients



and we need to know the functional form of the input. For example, in the case shown it was

a  step input.  So,  the  mathematical  represented of  step input  has  to  be supplied  then  the

solutions of the differential equation will give you the output which is represented as q 0

which is a function of time.
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So, if you consider simple method, simple functional form such as this step input, for input,

we can usually drop the differential terms in the input. What you mean here, that if we know

the functional form of q in then I do not have to express q in as a general mth order ordinary

differentially equation with constant coefficients because I know the functional form of the

input.

So, commonly we use simple functional forms for inputs such as step input, there is ramp

input which is a linear variation with time, there is sinusoidal input which changes as a sine

wave so on and so forth. So, in that case we can drop the differential equation on the right

hand side and can put the functional form of the input as it is. For example, if I use step input

or if I use this is an example of ramp input,  this  is time and this is input. So, I can the

functional form of this input will be that of a straight line, this let us say this goes through the

origin.

In that case I do not need to represent q in or the output or the input to the instrument as an

ordinary differential equation, because I can explicitly put the functional form of the input



and then we drop these differential terms. In that case, a generalized mathematical model for

an instrument will be represented by this and for common engineering applications we will

make use of this. So, the let the output be represented by nth order differential equation and

on the right hand side let us take the functional form of the input.

The commonly used functional forms are step input, ramp, sinusoidal so on and so forth.

There is impulse, you will learn more about such inputs or such relationships for different

systems when you study process control in some other class.
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So, now, if an nth order differential equation represents any general instrument, I can say that

zero-order instrument will be represented by a zero-order differential equation with constant

coefficients. A first order instrument will be represented by first order ordinary differential

equation with constant coefficients. A second order instrument will be represented by second

order ordinary differential equation with constant coefficients so on and so forth. So, I will

start with the general ordinary differential equation of nth order representing an nth order

system and then from that equations by putting n equal to 0 or n equal to 1 or n equal to 2, we

will  get  the  models  or  the  modeling  equation  for  zero-order,  first  order,  second  order

instruments and so on and so forth.

So, let us look at here, so, this is we are saying now, that a generalized mathematical model

for an instrument which is commonly used. So, for a zero-order instrument we will keep only



the zero order terms on the left hand side of the equation. So, what is zero-order? Only this is

the zero-order term. This is first order term, before this will be second order term so on and

so forth. So, this is the zero-order term. So, if I retain only zero-order term, what I will have

is I will drop this entire part and will have only this.
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So, a 0 q 0 is b 0 q in. So, this is an algebraic equation. Please note, that this is not an

ordinary differential equation, this is an algebraic equation. So, this algebraic equation relates

input and output and a 0 and b 0 are the constant coefficients. So, if I write output q 0 as b 0

by a 0 into q in and represent b 0 by a 0 as K, what I get is q 0 is K q in. This K, please note,

that this is output by input. So, this is by our previous definition represents static sensitivity.

So, this equation represents a zero-order instrument which is an algebraic equation.
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So,  first  order  instrument,  let  us  extend  the  same idea,  a  first  order  instrument  will  be

represented by first order differential equation. So, we will keep up to first order terms. We

will keep only first order terms on the left hand side. So, this is the general equation. If I keep

only first order terms I will retain only this.

So,  this  represents  an  ordinary  differential  equation  with  constant  coefficient  which  is  a

model for first  order instruments. This equation can be rearranged as follows; divide this

equation throughout by coefficient of zero-order term which is q 0. So, this equation we get if

I divide this equation throughout by a 0, now, we define a 1 by a 0 as time constant of the

instrument and b 0 by a 0 we have seen previously it represents static sensitivity.

So, in a zero-order instrument we had only one term which was K, the static sensitivity, in

first  order  instruments  we have  2  parameters  one  is  a  1  by  a  0  which  is  time  constant

represent commonly as tau, it has unit of time and another parameter is b 0 by a 0 which is

known as  static  sensitivity  and has an unit  of  output  by unit  of input.  So,  introduce the

operator capital D which is d dt. So, we can write as d dt of q 0, so, d dt of q 0 can be written

as Dq 0. So, this was q 0 here, a 1 by a 0 is tau. So, this can be written as tau D plus 1 into q 0

is Kq in.

This is a multiplication sign. So, a first order instrument is represented as tau dq 0 dt plus q 0

equal to K q in; setting small d dt as capital D, you will get this equation. So, this equation



represents a first order instrument which has 2 parameters; one is time constant, another is

static sensitivity.
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Let us extend it further through second order instruments. So, for second order instrument

will  keep  up  to  second  order  terms  on  the  left  hand  side  of  the  generalized  equation,

generalized nth order equation, if we do that we will get this equation.

Again, divide this equation throughout by the coefficient of zero-order term q 0. So, I get a 2

by a 0 here, a 1 by a 0 here and b 0 by q 0 here. Note that b 0 by a 0 is same as static

sensitivity K. This 2 terms is written as follows; we introduce a term called natural frequency

which is square root of a 0 by a 2 and we introduce another term called zeta which is a 1 by 2

square root of a 0 a 2.

So, if we do that, I will write this differential equation as this. Here, again I have introduced

capital D as d dt. So, in this equation we have 3 parameters K, which is sensitivity, natural

frequency which is this and zeta which is the damping ratio. So, this is also written as tau

square d square q 0 dt square plus 2 zeta tau d q 0 dt equal to K q in. If you introduce these

terms you will be able to write this from here.
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Now, we will  see that  the instruments are  represented by ordinary differential  equations,

leaving aside the zero-order instrument. So, to know the output of an instrument for a given

input  we  should  be  able  to  solve  an  ordinary  differential  equation.  There  are  different

techniques for solutions of ordinary differential equations. Linear differential equations can

be solved analytically; non-linear differential equations are ordinarily solved, numerically. In

this  lecture,  as  of  now we  are  talking  about  linear  instruments.  So,  the  instruments  are

modeled by linear ordinary differential equations.

In process control and instrumentation a popular technique called Laplace transform function

exists. A popular technique called Laplace transformation which can be used for solutions of

ordinary differential equation. So, what the Laplace transformation does is, it converts the

ordinary differential equation to an algebraic equation. Now, there is something called inverse

Laplace transformation, so, if I do the inverse of the Laplace transformation I will get the

final output. So, what happens is the differential equation is in t domain means time domain.

So, if you take Laplace transformation, you will get algebraic equation in s domain. Now, you

solve the algebraic equation in s domain, you take the inverse Laplace transformation you get

back  the  solution  in  t  domain  or  time  domain.  So,  if  we  know  how  to  take  Laplace

transformation  of  differential  equations  even  if  you  know  how  to  take  inverse  Laplace

transformation of an algebraic equation, I will be able to solve linear ordinary differential



equation  with  constant  coefficients.  Remember,  the  Laplace  transformation  will  work  on

linear differential equations because Laplace transformation is a linear operator.

(Refer Slide Time: 25:32)

So, let us quickly see few points about Laplace transformation. So, we represent Laplace

transformation  a  function  f  which  is  a  function  of  time  as  this  and  after  Laplace

transformation of function f t what we get is an algebraic equation in s domain we represent

that as F of s.

So, if I take inverse Laplace transformation of F s, I should get back this functioning time

domain. Laplace transformation is defined by this integral. So, you wish to take the Laplace

transformations of function f t multiply that by e to the power minus s t and then integrate

between 0 to infinity. So, the Laplace transformation of function f t is integral 0 to infinity f t

e to the power minus st dt. So, this integration has to be carried out.

Now, you have standard text books of process control they are at tables showing the Laplace

transformation  of  various  functions  as  well  as  inverse  Laplace  transformation  of  various

equations  or  functions.  So,  looking at  those tables  you should be able  to  solve  ordinary

differential equations using Laplace transformation.

So, let us say Laplace transformation of unit step is this, let us put 1 in place of f t and if we

do this integration I will get 1 by s.
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Similarly, if you want to take the Laplace transformation of function e to the power minus

alpha t, you put e to the power minus alpha t in place of f t and then you get 1 by s plus alpha.

So, Laplace transformation of e to the power minus alpha t is 1 by s plus alpha. Similarly,

Laplace transformation of function t, f t equal to t is 1 by s square.
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So, if I have F s which represents a Laplace transformed quantity, so, the right hand side part

represents Laplace transformation of some function f t. So, I want to know what is the f t,

from this Laplace transformed quantity.

So, I have to what I have to do is, I have to take this inverse of this. So, basically see I have to

take inverse of this, I have to take inverse of this, I have to take inverse of this and add up.

Now, look at here Laplace transformation of unit step is 1 by s, so, Laplace transformation of

5 by s is Laplace transformation of 1 is 1 by s. So, Laplace transformation of 5 is 5 by s, see

Laplace transformation of 5 is 5 by s.

So, inverse Laplace transformation of 5 by s will be 5. Thus, how I get the inverse of lap 5 by

s is as 5. Similarly, 1 by s square is a Laplace transformation of t. So, 12 by s square will be

the inverse of 12 t and similarly, 1 by s plus alpha becomes inverse of sorry 1 by s plus alpha

becomes Laplace transformation of e to the power minus alpha t. So, 8 by s plus 3 will be

Laplace transformation of 8 into e to the power minus 3 by t.

Consider 1 by s plus 3 first here. So, put alpha equal to 3, so, it becomes e to the power minus

3t. Now, multiply this 8, this can be written as 8 into 1 by s plus 3. So, from here and here

you get that inverse of 8 by s plus 3 is 8 into e to the power minus 3t.
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So,  another  example,  if  the  Laplace  transform quantity  is  this,  inverse  will  be  this.  You

consider each term individually, make use of the table or the equations shown in the previous

slide you will be able to get this.

(Refer Slide Time: 32:21)

 

So,  now let  us  quickly  see,  how I  solve  an  ordinary  differential  equation  using  Laplace

transformation. So, Laplace transformation of f prime t which is d dt of f t is sF s minus f of

0. So, this is the initial condition. So, let us say I have an ordinary differential equation given

as dy dt plus 2y equal to 12 and initial condition is given as y 0 equal to 10, y at t equal to 0 is

10. So, take Laplace transformation of this. So, you have to take Laplace transformation of dy

dt, you have take Laplace transformation of 2y, I have to take Laplace transformation of 12.

So, it becomes sY s for this 2Y s for this and 12 by s for this.

So, Laplace transformation of dy dt is sF s minus f 0. So, this is that sF s and this is y 0 which

is 10. So, I rearrange this to get this, which can be further written as this. So, I have to take

inverse of now 6 by s to get y t. I have now an algebraic expression Y s because it is Laplace

transformation. Now to get back y t, I have to take inverse of this. So, I have to take inverse

of 6 by s. So, 6 into 1 by s; 1 by s is Laplace transformation of 1. So, 6 by s, inverse of 6 by s

will be 6. Similarly, 4 by s plus 2 considered it at 4 into 1 by s plus 2. So, 1 by s plus 2, from

1 by s plus 2 you get e to the power minus 2t as inverse multiply by 4. So, the solution to this

differential equation for this initial condition is y t equal to 6 plus 4 into e to the power minus

2t.
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So, nth order differential equation, as we have talked about can be represented by this here.

The only change I have made is in place of d dt, I have used the differential operator capital

D.  You  can  take  Laplace  transformation  and  you  will  get  this.  Now,  this  Laplace

transformation can be written like this which allows you to write something called Y s by X s

which represents the transfer function for the instrument.
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So, this is I was talking about. So, for zero-order instrument to get the transfer function you

have to drop all this terms, so, we will get b 0 by a 0. For first order instruments, we have to

drop all  these  terms,  so,  you get  b  0 by  a  1  s  into  a  0  and similarly, for  second order

instruments you have to drop up to this. So, you get the transfer function as this. So, transfer

function is Laplace transformation of output divided by Laplace transformation of input. So,

we will stop here.
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And in  the  next  class  we will  talk  about  example  analysis  of  zero-order  and  first  order

instruments.


