
Course on Transport Phenomena
Professor Sunando Dasgupta

Department of Chemical Engineering
Indian Institute of Technology Kharagpur

Module No 2
Lecture 09

Equations of Change for Isothermal Systems

We are going to start with something new this morning. So far what we have seen is that using a

simplified shell  momentum balance,  it  is possible to account for all  the forces acting on the

different surfaces of the shell and we can calculate, we can express the convective momentum

that comes into the system, the conductive momentum, in other words, the molecular transport of

momentum or the shear stress which is acting on the lateral surfaces of the control volume. 

And we have also identified that the forces which can act on the control volume would be the

surface forces and body forces. And in our example so far we have seen, we have used pressure

force is the only surface force and gravity as the body force. If the system is in steady state, then

we  understand  that  the  sum total  of  all  these,  that  is  rate  of  momentum in  by  2  different

mechanisms - rate of momentum out + some of all forces acting on the system must be 0 in order

to maintain the steady state.

So this  give  us  a  different  situation,  this  different  situation  where  the  smaller  dimension is

allowed to approach 0. In other words we have used the definition of the 1 st derivative when let

us say del X tends to 0. The definition of the 1st derivative would give rise to a differential

equation to. So that differential equation explains or describes the motion, the laminar flow, the

laminar  motion  of  fluid  layers  slipping past  one  another,  it  is  steady-state  and there  are  no

unbalanced forces acting on the system.

Many of our everyday examples are at steady-state and it is possible to use this shell momentum

balance to obtain concrete expressions for velocity for such systems. We have used the, we have

used the case of flow through a pipe, flow through a tube and we have seen how the velocity

varies as the function of radius. All these cases that we have analysed are one-dimensional flow.

So for example in the case of flow through a tube, on the application of pressure difference and

gravity, it was a vertical tube.

The velocity was a function of radius but it was not a function of the axial distance which is Z. 
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So velocity over here at a fixed R location and velocity at some other value of Z at the same R

location, the these 2 velocities are same. So the velocity does not vary initially, it only varies

radially. And we have also found out that the velocity distribution was parabolic in nature with

the maximum at the Central  line and from the expression of the velocity,  this  is differential

approach when we get the parameter of interest, in this case velocity at every point in the flow

domain and from this velocity profile we could and we could differentiate this velocity profile

and if this is a Newtonian fluid, then we understand that the shear stress is simply going to be

mindless mew times velocity gradient at some specific value of R, where R is the radius of the

tube

So with this approach, we did find what is the wall shear stress exerted by the fluid on the walls

of the tube. And the we also derived what will be the formula for average velocity. This is axial

average velocity, velocity across an area which is perpendicular to the direction of motion. So it

is the cross-sectional area of the tube across which we average the velocity and we obtain, we

have obtained an expression for the average velocity.

This average velocity profile multiplied by the area would give us the volumetric flow rate. You

know that is the known, that is the well-known Hagen-Posse equation. So there are some few

other examples that we have solved in previous classes the flow along vertical, flow along an

inclined plate or the flow along the outer wall of a tube when the flow comes from below comes



to the top of the tube, spills over and starts to fall along the wall, along the side walls, along the

outer sidewalls of the tube.

Progressively what we have seen is that the approach that we have used so far is appropriate for

simple systems were the flow is one-dimensional, where the flow is laminar, where the flow is

steady and where the geometry is rather straightforward but the problems soon start to creep in

when these conditions are not met. So we have increasingly felt the need to express these or need

to formalise our treatment of transport through any system even at unsteady state cases. 

In order to do that, one must 1st start with some of 2 or 3 basic definitions of how do we define

the derivatives of a system. In this class and the next class, I will talk about what is going to be

the partial time derivative, the total time derivative and the substantial time derivative, these are

important concepts which must be clarified before we get into the next part which is the simple

continuity equation.

The derivation of the continuity equation, I will not talk about the entire derivation in this class, I

will tell you the textbook where it is available. And then we will go into the equation of motion

or a special form of equation of motion of a fluid which is known as the Navier stokes equation.

Now once  we  have  been  Navier  Stokes  equations  with  us,  then  we  would  see  that  all  the

problems that we have handled so far can be handled quite easily by choosing the appropriate

Navier Stokes equation for the flow situation.

And once that is done, we will solve a few more involved problems and then move into the next

chapter. 
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But  before  we  before  we  start,  the  the  topic  of  our  today’s  descript,  today’s  lecture  is  the

equations of change for isothermal systems. Now when we talk about equations of change, there

are certain definitions which needs to be clarified. So the concepts of different derivatives okay,

you you are trying to measure something as a function of time and depending on where you are,

what are you doing, the values of the quantity that you measure as a function of time can be can

greatly vary.

So I will  try to give you an example so that you can have a clearer understanding of these

different derivatives. Let us see, you pick the busiest intersection of some place in your town

where roads have come from all sides at that crossing. Now you are standing right at the centre

of this  intersection and you have been told that please count the number of people who are

wearing a blue shirt. Okay? 

So you are standing at the middle of a crossing and counting people with, who are wearing blue

shirt. You are not moving, you are static at that point okay and you are measuring the number of

such people as a function of time. So every 2nd, you try to see how many blue shirts you can see

while you are stuck at a position. So you are at the centre of the reference frame which is static,

which does not move and any quantity that you measure as a function of time is known as the

partial time derivative.



Let us say this is the C denotes the number of number of persons who are wearing a blue shirt,

variation of that with respect to time where X, Y, Z are constant. So your location is constant,

XYZ is constant. You are right at the centre of the intersection and measuring what is the value

of C. Now let  us say you are,  while standing there for some time, you are I  mean you are

definitely bound to get bored. 

So you get bored and you have decided that enough of it, I am not going to be at that intersection

for a long team. I need to walk around, I need to walk around a bit around in in the area where I

am trying to count the number of number of persons with a blue shirt. So you start to move

around. You have a velocity of your own. So you can go in any direction that you want and this

with some velocity.

You would still being a very conscious walker, you are still counting the number of persons with

a blue shirt.  But since you now you have a velocity of your own, the numbers that you are

counting  would  definitely  be  different  had  you been struck to  the  place  where  X,  Y,  Z are

constant. So right at the centre of the intersection. So if you measure the number of people while

standing at the intersection and if you measure the number of people while you start to move

around with a velocity of your own, these 2 numbers must be different. 

So when you measure the variation of the number of people wearing blue shirt as a function of

time while you have a velocity of your own, by definition, it is known as the total time derivative

bridges denoted by DCDT and this DCDT is simply expressed in this where DXDT, DYDT and

DZDT are the components of your velocity. So you being the reference frame, you start to know

more around. When you start to move around, this DXDT, DYDT and DZDT are the components

of your velocity and obviously the velocity of you will have an impact on the numbers that you

count and that is why it is called the total time derivative and expressed as DCDT.

The next one is even just an extension of that. How long you can stand so you decided to move

with a velocity. How long you can move around? At some point of time, you get tired and being

a busy intersection, there is a lot of crowd which is going in all possible directions. So at some

point of time, you decide that I had had enough, let us I will simply float with the crowd. 



No matter which way the crowd is, the maximum number of people are moving, I will move

with them with the velocity, with their average velocity and at some point I will, at each point of

time I will always move with the velocity of the prevailing crowd at that point of time. But you

are still counting the number of persons with the blue shirt. So now you do not have a velocity of

your own. 

Whatever be the local fluid velocity, that is the velocity of the reference frame and the numbers

that you are counting is some sort of a derivative that DCDT, that time derivative of the number

of  persons  is  a  derivative  where  the  reference  frame moves  with  the  fluid  with  its  average

velocity. Or that way, it can also be said that it is a derivative following the motion.

So this is generally called the substantial time derivative. Innocence, it is a derivative following

these following the I mean the motion of the fluid and it is expressed as del C del T + VX times

del C del X VY times del C del Y and VZ times del C del Z where VX, VY, and VZ are the

velocity of the fluid at that point at that instant of time. So mark the difference between these 2.

Okay? 

So this, these are velocity is of you that you have decided to move with this velocity whereas

these velocities are that of the fluid surrounding you. So you let go yourself and float with the

fluid and the numbers direct to count are now known as the substantial time derivative or the

derivative  following  the  motion.  So  we  will,  the  concepts  are  important  in  our  subsequent

development where we find out what is partial time derivative where this stationary frame is

fixed,  the total  time derivative where the reference frame has a  velocity  of its  own and the

substantial time derivative where the reference frame has the velocity as that of the fluid.

So with these concepts clearly understood, now we are going to, we are in a position to derive

what  is  going to  be  the  equation  of  continuity.  An  equation  of  continuity  is  nothing  but  a

statement of conservation of mass. So if I define a control volume in space, fixed in space and

allow fluid to come in and go out through all the possible faces, then the rate of mass of fluid

coming in mind is  the  rate  of  mass  of  fluid  that  is  going out  must  be equal  to  the rate  of

accumulation of mass inside the control volume. 



So in - out must be equal to accumulation and this is nothing but the statement of conservation of

mass  and we  are  going  to  derive  the  equation  of  continuity  for  a  system with  a  Cartesian

coordinate system and the dimensions of the volume is simply going to be del X, del Y and del Z.

So it is above shows dimensions are del X, del Y, del Z. It is placed in a flow and the liquid is

coming in through the X face, Y face and Z face.

Liquid enters the control volume and through the face at X + del X, Y + del Y and Z + del Z, the

fluid leaves the control volume. And as a result of this, there is going to be some amount of some

amount of mass accumulation if possible within the system. So we are going to write the balance

equation for such a system and derive the equation of continuity.
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So in order to derive the equation of continuity, the way we are going to start it, we define a

coordinate system X, Y, Z and we have, as I mentioned before, there is a box and this box, so this

area is let us say delta Y from here to here. This is delta X and this is delta Z. So some amount of

mass is coming in here through the X face in the mass that is going out. So the X face is defined

as the face which has areas del Y del Z. 

So this is your X face and on the other hand on this side, you have X + del X face. Similarly this

face whose area is del X times del Z is known as the Y face and I have a Y + delta Y face on the

other side. And this is my Z face so which has areas of del Y times del X. So we are going to



write the amount of mass which comes in through all these faces. So what is the amount of load

which comes so comes in through the X face?

So rate of mass in through X face can simply be obtained as VX evaluated at X multiplied by del

Y del Z. So this has units of meter square, this has units of meter per second. So this becomes

meter cube per second. Meter cube per second will multiplied by rho, makes it kg per second. So

this is the so the unit of this, so this is kg per meter cube, essentially unit here is you are going to

get kg per second.

So therefore this quantity gives you the amount of mass, the rate of mass in, time rate of mass in

through the X face. And the rate of mass out through the face, again I am talking about X face

only, would simply be rho VX times del Y del Z for instant of being evaluated at X, it is going to

be evaluated at X + delta X which is this face. So rho VX, if you just think of rho VX, it is kg per

metre cube and meter per second, so essentially this is kg per metre square per seconds.

So rho VX is nothing but the mass flux. So this mass flux, since this is kg per metre square metre

square per second, so this mass flux when it is multiplied by the Ajax are responding area, would

give you kg per second or the rate of mass in coming in to the control volume. As a result of so

you are going to have 3 in terms and the 3 out terms. The in are at X, Y and Z face, the out are

going to be at X + del X, Y + del Y and add Z + del Z faces.

As  a  result  of  this  in  and  out,  you  are  going  to  get  the,  there  would  be  some  amount  of

accumulation inside the system. So your governing equation is rate of mass accumulation must

be equal to rate of mass in - rate of mass out. So if I such to dude these to in here and think of

what is rate of mass accumulation,  rate of mass for for in order to in order to have a mass

circulation inside the system, the density of it must change.

So this is del rho directly is the change intensity of the fluid contained within the control volume.

So what is del rho del T is the change in fluid density of the fluid contained within the control

volume. So what is del rho del T? Is kg per metre cube per second. So this must be multiplied

with del X del Y del Z to make it kg per second and therefore del X del Y del z times del rho del

T would give you the time rate of mass accumulation of inside the control volume.
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So the left-hand side is going to be equated to the right-hand side and what you get is del X del Y

del Z del rho del T which is the accumulation term must be equal to del Y del Z. Then rho VX at

X, this is the in term, - rho VX at X + del X, this is the out term + del X del Z rho VY which is Y,

that is the in term through the face at Y - rho VY at Y + del Y, this is the out term out term

through the Y face + del X del Y rho VZ at Z - rho VZ at Z + delta Z.

So this is the in term in through face through face Z, out through face Z. So in other word in

difference term, this is essentially what is known as the conservation of mass. So the obvious

next step would be to divide both sides by del X del Y del Z and take in the limit when all del X

del Y del Z tends to 0. So dividing both sides by del X del Y del Z and and in the in this

condition where del X, del Y and del Z all approach 0, you get the definition of the 1 st derivative

and the expression would simply be equals - del del X of rho VX + del del Y of rho VY + del del

Z of rho VZ.

Please note that I did not take the rho outside because I did not yet put the put the put the special

condition  that  the  flow  is  incompressible.  So  I  am  allowing  the  flow  to  be  both  either

compressible or incompressible. So that is why my rho stays inside the differentiation fine. Now

this expression can be expressed in a more compact form is - del rho V where this is, rho is kg

per metre cube and meter per 2nd. 



So this is essentially kg per metre metre square per seconds. So this is nothing but the mass flux

which is a vector. So this is the divergence of mass flux vector must be equal to the time rate of

change of density inside the inside the control volume. So that is one way of expressing the

equation of continuity or the conservation of mass.
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Another way if you can expand the term that is my I started with this to be equal to - del del X of

rho VX + del del Y of rho VY + del del Z of rho VZ. So this was the equation of continuity

which and then I can express it I I I can simply make it as VX times del rho del X + rho times del

VX del X, similarly for this VY times del rho del Y + del VY by del Y + VZ Times del rho del Z

+ rho times del VZ del Z, simply by expanding the derivatives.

Now what I am going to do is I am going to bring this term, this term and this term on the left-

hand side. So if I bring these terms to the left-hand side, it would be simply be del rho del T + 

VX del rho del X + VY del rho del Z + VZ is simply going to be equal to - rho del VX del X + 

del VY del Y + del VZ del Z. If you look at the left-hand side carefully, it is nothing but what we 

have written as the expression for the substantial time derivative. del C del T + VX del C del X +

VY del C del Y + VZ del C del Z.

Simply replace C by rho and what you get is this expression. (())(26:48) So the entire left-hand 

side can be expressed as del (())(26:52) T is equal to - rho, this is another form of equation of 

continuity where the rho is expressed in substantial derivative form. 
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So the 2 common forms that you would get for the case of equation of continuity, one is del rho 

del T which is partial time derivative and which is equal to the divergence of the mass flux vector

and the other one is del rho del T or the substantial derivative of density is equal to - rho times 

del V. So these 2 together are known as the continuity equation.

 So this continuity equation plays a very important role in in fluid mechanics, in transport 

phenomena because it tells you about it it is nothing but the statement of conservation of mass. 

So rate of mass coming in - rate of mass going out must be equal to the rate of mass being 

accumulated inside the control volume. And so I have shown you two different forms two 

different forms of the equation of continuity and the 2 different forms can be expressed either in 

partial derivative form or in substantial derivative form.

But there is a special form of equation of continuity with which we are mostly concerned with 

which which which are more common, they are known as the equation of continuity further and 

incompressible fluid. And incompressible fluid is the one in which the rho, the density remains 

constant. It is not a function of X, it is not a function of X, Y or Z. 

So if the density is constant, if it is an incompressible fluid, then if you look at this expression, it 

would it would surely give you the X the del V is equal to 0 or in other words, del VX del X + 



del VY del Y + del VZ del Z to be equal to 0. So this is the form of incompressive the continuity 

equation for incompressible fluid which is rho to be a constant.

So these 2 equations are equivalent, this equation is a special form of equation of continuity is 

when there is when the when you do not have any variation of rho with with any of the any of 

the independent variables present in the system. So we have done the equation of continuity. In 

the coming class we are going to do the equation of motion and once we have the equation of 

continuity and equation of motion clear clear in your mind, then you would be able to solve 

almost any problem of momentum transfer, at least you will be able to formulate the problem.

Whether or not an analytic solution is possible, that we have to see on a case-by-case basis. For 

each cases, for each case, it may not be possible to obtain an analytic solution and we may have 

to resort to other techniques including numerical techniques but this would give you the tool at 

least to get the the governing equation correct. And the expression for continuity equation which 

I have shown you is basically for the is basically for the Cartesian coordinate systems.

You have seen similar such relations, similar such relations of equation of continuity for 

cylindrical systems and for spherical system. So if you look at any textbook, you would see the 

expression for equation of continuity in all 3 possible coordinate systems, okay? And this part 

what I am I am teaching you right now, is clearly mentioned in Bird Stewart and Lightfoot. 

So the book that I followed for this part is from Bird Stewart Lightfoot’s book, Lightfoot’s book 

on transport phenomena. So the equation of continuity in in Cartesian coordinate as well as in 

cylindrical coordinate and in spherical coordinate, they all are provided in this this text and 

whenever whichever we the your system, whatever be your system, depending on that, we 

choose the appropriate expression for the equation of continuity. So next class, we will get into 

the equation of motion.


