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So we would continue with this analogy and most importantly the application of analogy in

solving real-life problems in problems where we have a prototype in which heat transfer is

taking place, we would like to know what is going to happen without doing the experiments

if a mass transfer operation takes place over such a device. But before we do that, let us

quickly look at the thicknesses of boundary layers, the momentum, the masses transfer and

heat transfer boundary layers in light of the analogy that we have developed so far. 
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We are looking at the boundary layer analogies and we are looking at the significance of the

numbers which we have come across. The 1st number that we have come across is Prandlt

number  which  is  the  momentum  diffusivity,  so  this  is  mu  by  rho  divided  by  thermal

diffusivity  which  is  K  by  rho  CP.  So  the  Prandlt  number  is  essentially  then  a  ratio  of

momentum diffusivity by thermal diffusivity. And it has been, it can be seen from the results

of Delta and Delta T that is hydrodynamic boundary layer thickness divided by the thermal

boundary layer thickness is equal to Prandlt, Prandlt number to the power N. 

And for a gas, since the gases are very well mixed, then for a gas Delta T, the thickness of the

thermal boundary layer would be equal to the thickness of the hydrodynamic boundary layer.

But for a liquid metal, since value of K is very large for the case of the liquid metal, the



thermal conductivity of a liquid metal is so high that the effect of the surface, effect of the

solid surface in contact with the liquid will be felt at a greater distance inside the liquid metal.

So if we have a solid plate and you have a liquid metal on top of it, says the thermal, since the

thermal conductivity is for life, the thermal diffusivity is so large, the effect of the plate will

diffuse to a greater depth into the liquid metal and therefore the point over here will sense, the

point over here will sense in terms of temperature that solid plate exists over here whose

temperature is different from, different that from the flowing liquid metal. But at this point,

the  hydrodynamically,  the  molecule,  the  liquid  molecule  at  this  point  will  not  feel  the

presence of the solid plate. 

So for a liquid metal, the thickness of the thermal boundary layer is going to be much more

than the thickness of the hydrodynamic boundary layer. So the entire, the thickness of the

thermal boundary layer is going to be large since the thermal diffusivity is large, the thermal

diffusivity, diffusivity of a liquid metal is going to be large since the value of K is very large

for the case of a liquid metal. Whereas the thickness of the hydrodynamic boundary layer

does not depend on the value of K, so in cases of liquid metals when it flows over a hot

surface,  the  thermal  boundary  layer,  the  temperature  front,  the  temperature  front  will

propagate,  will  penetrate  more  into  the  liquid  metal  as  compared  to  the  momentum

momentum penetration of the, due to the presence of the solid plate. 

So  the  thickness  of  the  thermal  boundary  layer  is  going  to  be  very  large  compared  to

thickness of the hydrodynamic boundary layer for the case of a liquid metal. On the other

hand if you have the case of a oil, for example, for any oil, this thermal boundary layer is

going  to  be  very  thin  in  compared  to  the  hydrodynamic  boundary  layer.  So  we  have  2

extremes, liquid metal, high thermal conductivity, Delta T is going to be very large compared

to Delta, for oil, with a low K and a very and a large value of rho, the thickness of the thermal

boundary layer is going to be less than the thickness of the hydrodynamic boundary layer.

Similarly we can get Schmidt number which is nothing but the momentum diffusivity by

mass diffusivity. 

So momentum diffusivity by mass diffusivity and Delta Y Delta C, similar to Delta by Delta

T, you can easily see that delta by Delta C is going to be Schmidt number to the power N.

And by combining these, the Prandlt number and Schmidt number, a new number has also

been proposed which is especially use for the case of simultaneous heat and mass transfer

which is called the Lewis number. So Lewis number is as I said is used for simultaneous heat



and  mass  transfer,  it  is  defined  as  the  thermal,  ratio  of  the  thermal  diffusivity  by  mass

diffusivity. 

So thermal diffusivity by mass diffusivity, if you begin the momentum diffusivity in here,

both are the numerator and the denominator, so what you see is this is equal to Schmidt

number,  so this  part  is  Schmidt number and this  part  is  1 by Prandlt  number.  So this  is

nothing but the inverse of Prandlt  number.  So Lewis number LE is equal to Schmidt by

Prandlt number. Okay. And as I as I mentioned before for the case of simultaneous heat and

mass transfer, the thickness of the boundary layer, thermal boundary layer and the thickness

of the concentration boundary layer, they are related by LE, Lewis number has the power N

and for most of the applications the value of N is taken to be 1 by 3. 

So this is something which we have, we already know, which are obvious, which can be

obtained easily from the from the analogy, I have just jotted down these together so as to give

you the  idea  of  relative  thicknesses,  the  relative  importance  of  momentum transfer,  heat

transfer  and  mass  transfer  and  how  the  boundary  layer  thicknesses  of  these  3  transport

processes are going to relate to each other through the relevant similarity parameters. That is

in  terms  of  and  lumber,  Schmidt  number  and  Lewis  number.  So  when  you  talk  about

hydrodynamic and heat transfer, it is going to be Prandlt number, hydrodynamic and mass

transfer, it is going to be Schmidt number and when you talk about heat, compare between

heat transfer and mass transfer, it is going to be the Lewis number. 

So the importance and significance of these numbers, the dimensionless numbers should be

very clear to all of you and there are exceptional cases where this analogy in its current form

will not be applicable, that I gave you the examples of, the examples of liquid metals in

which case the thickness of the thermal boundary layer will be very large in comparison to

the hydrodynamic boundary layer or heavy oil where it is simply going to be the reverse. The

boundary, the thickness of the momentum boundary layer would be more as compared to the

thickness of the heat transfer boundary layer. 

Whatever I have taught in terms of the analogy, it is available in the book Incropera and

Dewitt, so this it is there in Incropera and Dewitt that I have mentioned at the beginning as a

text, and they textbook for this course. So the name of the book is introduction to heat and

mass  answer.  So  these  analogies,  the  questions,  the  functional  forms,  all  these  are  from

Incropera and Dewitt, so you take a look at it, it is very well described in the book and I do



not think you will have any problem with any problem in understanding. But if you do, please

contact me, write to me and I will clarify any doubts that you may have. 

So now we are going to go into the last part of the course, the last few classes where we are

going to solve problems related to these analogies, related to simultaneous heat and mass

transfer and we would see how the analogies will make our life a lot simpler. There would be

even more topic which I would cover, probably at the last class is the error function. The

error function will keep coming back in the case of momentum, heat and mass transfer or

many other problems. So I would give you one or 2 examples of when the solution of a

differential equation having a specific set of boundary conditions will be of error function

type.  So you simply only have to write  the governing equation,  write the initial  and the

boundary  conditions  and you can directly  write  what  is  going to  be the solution  for  the

process. Okay. 
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And the use of that through you will  see that in the in the last  class. But right now the

problem that we are going to solve is, it is again a problem on transport analogy. What it tells

is that we have an irregularly shaped object, it could be of any, it could be of any shape, so

and we simply have the same shape, I mean these 2 are equivalent in terms of shape. I could

not draw it properly but you can you can we can get what I try to mean is, they are irregular

but whatever with the ship, the just the conversion factor, scale factor by which you have

increased it. So this is object one and this is object 2 and you simply have made the size of

the object a few times larger than that of the object normal one while keeping the shape

intact. 

So if this is, if the shape was just a square, you simply made it, you simply made it a bigger

square. So this is what I mean when you keep the shape intact, but the sizes are more. So you

have to, you have to pardon my drawing but what I, what I am trying to show you here is this

is object 1, that 2 and let us assume the shapes are same. So the irregularly shaped objects

which has an equivalent length to be equal to 1 metre and it is maintained at a constant

temperature of 100 degrees centigrade. So this is maintained at 100 degrees centigrade and it

is suspended in an air stream, so we have air flowing over it with air at 0 degrees centigrade

which is, which is flowing over object 1. 

And the pressure is given as 1 atmosphere and the velocity is 120 metre per second. So the

velocity of the air stream is also given, then air temp, then what you do is you measure the air

temperature at  a  point  near  the object  in  the  air  stream to be 80 degrees  centigrade.  So

somewhere over here you measure the temperature of this point and you find this temperature

to be 80 degrees centigrade. The 2nd object in this case the length scale is instead of 1 metre, it



is 2 metres. It is also suspended in an air stream, now both the air and the object in this case,

so one is at 100 degrees centigrade and it is it is interacting with air at 120, interacting with

air at 0 degrees centigrade. 

So this is from 100 to free stream temperature of 0 and the temperature near the surface is

given as 80 degree, that is the only information experimental information that you have. And

you know that the air is coming at 120 metre per second, its pressure is 1 atmosphere and so

on. So you have measured the temperature at a point and found the temperature to be 80

degrees centigrade. Now in the 2nd case where the length scale, length is 2 metres, both the air

and the object are at 50. So this is at 50 degrees centigrade and the air that blows, this is also

at 50 degrees centigrade. So these 2 are separate things, so here you do and heat transfer

experiment but here what you have is the mass transfer situation. 

The air stream velocity here is 60 metre per second and what you, you have a plastic coating

on the surface, a thin plastic coating on the surface that is that you are drying by putting the,

putting the flow of air on object 2. So this plastic coating is to be is to be dried by passing an

air  which is  that  50 degrees  centigrade,  the temperature of the object  is  also 50 degrees

centigrade.  The molecular  weight  of the vapour is,  molecular  weight  of the wafer  is  82,

saturation pressure is provided, saturation pressure for the plastic material is provided, so P

Sat is known to you. So what you have to do, you have to tell for a 2nd object at a location

corresponding  to  the  point  of  measurement  of  the  1st object,  determine  the  vapour

concentration and partial pressure. 

So if this is your location which I call as A, there is a corresponding location over here which

I call  it  as A prime. Your job is to find out without performing any experiment,  without

performing  any  mass  transfer  experiment,  what  is  the  vapour  concentration  and  partial

pressure. So at point A you measure the temperature, corresponding point is A prime on the

scaled up object. In here, since both are, the air and the object and the rat same temperature,

no heat transfer is taking place. But you have a plastic material on top of it, which is getting

dried, which is getting a so slowly you are having some evaporation from here, in order for

this plastic to be dried. 

So you cannot  measure  the  concentration,  you cannot  measure  the  vapour  concentration

because we do not have the tools to measure concentration. But we have tools to measure the

temperature which we have done. Using analogy, what you have to find out is what is the,

what is the vapour concentration and the partial pressure at point A prime. So this is a classic



ideal example, I think you have understood the problem, now I am going to go and solve for

it. 
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So object 1 and 2. The 1st step is to calculate Reynolds number. So what is the Reynolds

number for the case of 1? Kinematic viscosity 120 metre per second where we have the heat

transfer taking place, 1 metre is the length and nu has been provided in the problem to be this

much of meter square per seconds, so it is 6.59 into 10 to the power 6. What is RE 2? So as

you can see, these 2 are identical, so the Reynolds number, Reynolds numbers are same. The

values of the Prandlt number which are shown over here, Prandlt number is 0.71 and the

Schmidt number you can calculate, so and see what is its value. 

So it is provided that Prandlt number is equal to 0.703, so this is for Schmidt number for the

case of 2 where mass answer is taking place is kinematic viscosity by DAB. These values are

provided in the problem, so look at the value of Schmidt number and Prandlt number, they

are  equal.  Since  they  are  equal,  Reynolds  numbers  are  equal,  so  if  you go back to  our

fundamental equation and concentrate only on the heat and mass transfer part of it. So if you

concentrate on the heat and mass transfer part of it, you would see that Prandlt number are the

same for the case of heat transfer and mass transfer and at the same time the Prandlt number,

the Prandlt number and Schmidt number are also same. 

So  whatever  be  and  the  velocity,  so  whatever  be  the  solution  for  temperature,  so  the

functional  form  of  temperature  and  the  functional  form  of  concentration,  both  in

dimensionless form must be equal to each other because your boundary conditions are met,



the equality of the boundary conditions are met and this one, Re PR is equal to RE Sc since

RE 1 is equal to RE 2 and Prandlt and Sc, Prandlt and SC are almost equal. 
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So therefore T star, the dimensionless temperature at given locations must be equal to CA

Star X star Y star. And how we define T star is T - TS, surface temperature by T at infinite

distance - TS is equal to CA - CAS by CA infinity - CAS. So the equality of dimensionless

temperature and dimensionless concentration which results because the Reynolds numbers

are and Prandlt  number is  equal  to  Schmidt  number,  so therefore the functional  form of

dimensionless temperature and dimensionless concentration which are defined it this way are

the same. Now as was mentioned in the problem that location, location for measurement was

identical for between object 1 and 2. 

The problem was to the problem was to evaluate at a location corresponding to the point of

measurement of the 1st object what would be the vapour concentration and partial pressure.

So when it says corresponding to the point of measurement of the 1st object, it essentially tells

you  that  the  dimensionless  values  of  X  and  Y which  are  used  to  denote  the  point  of

measurement, they are identical. So I can simply write this. So once based on the analogy and

taking about the governing equations and the implications of the Prandlt number and Schmidt

number and Reynolds number, so since I have written this, rest is very simple then. 
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So T - TS by T infinity - TS equal to CA - CAS by CA infinity - CAS. Now I need to find out

what is CAS, concentration of a species A at the solid surface which should be equal to PA

saturation divided by RT using the ideal gas law. So this CAS is the concentration of species

A at the surface, the P sat is provided as 0.0323 atmosphere, we use the corresponding value

of R which is 8.205 metre cube atmosphere kilo moles Kelvin and the temperature in Kelvin

scale, the temperature for the case of mass transfer, it is 50. 

So this is the concentration sorry CAS, so the CAS would be equal to, so from here I can

therefore write C A to be equals CAS + the denominator CA infinity - CAS times T - TS by T

infinity - TS, just an expansion of that in terms of in terms of this. So your CA is, this is CA

S, value of CA infinity at a point far from the far from the wall, temperature was measured to

be 80 at that location, T surface is 100 and T infinity is 0 and TS is 100. So when you when

you do that, you are going to get CA to be equals 0.975 into 10 to the power - 3, this is kilo

moles per metre cube. So this T infinity, as you see in your, in the problem is 0 degrees

centigrade and TS is 100 degree centigrade. 
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So this is the 1st part of the problem. The 2nd part of the problem, the part B tells you that if

the average heat flux is 2000 Watts per metre square for the 1st object, what is the average

mass flux for the 2nd object? So we have already calculated the vapour concentration over

here,  so now the next and I am sorry, the pressure,  we have to also calculate the partial

pressure. So partial pressure would simply be equals PA which is CA RT, the value of CA is

already known, it would come to 0.0258 atmosphere. So an analogy essentially gives you

value of concentration and the value of the partial pressure without having to solve any mass

transfer equations, any complicated equation. 

So results obtained in heat transfer experiments can simply be projected to obtain results of

mass transfer experiments that you have not done. Okay. So this is one of the big advantages



of this analogy and now we are going to find out, if the average heat flux is known for the 1 st

object, what is going to be the average mass flux for the 2nd object. So for this part, 2nd part,

we know that for 1 Q double prime is provided as 2000 Watts per metre square. We also

know from Newton’s law of cooling, this is H bar, average value of heat transfer coefficient,

T of the surface - T infinity and N A double prime, the mass flux would simply be equal to H

bar M, in terms of concentration, this is molar concentration, - CA infinity. 

Since it is molar concentration, in order to change it to the mass form, I simply multiply it

with the molecular weight. So this is mass flux, molar concentration, molecular weight and

this is the average value of mass transfer, convective mass transfer coefficient. From analogy,

since Reynolds number of 1 is equal to Reynolds number 2 and Prandlt number is equal to

Schmidt  number,  I  can  simply  write  the  average  value  of  Nusselt,  the  average  value  of

Nusselt number must be equal to the average value of Sherwood number, that is what is given

by the analogy. So which I have discussed many times. 

So if that is the case, then I simply divide this by this and what I would get is N and I can

expand it a little bit more, so H bar by M, H bar M is equal to L 2 by L1, which is, L2 refers

to the mass transfer case, L1 prefers to the heat transfer case times K by DAB. So this is the

relation from which I can obtain the unknown values and then I divide NA by Q and what I

would get is NA double prime by Q double prime is equal to H bar M by H bar. Simply

dividing this by this. So therefore my NA double prime, the same expression over here. 

And now in this H bar M by H, I bring this one over here. So in this, the value of Q double

prime known to me to be 2000 Watts per metre square, L2, L1, the ratio would be 2, the value

of K, DAB, CAS , CA infinity, TS, T infinity and MA are everything known to me. So I put

this, I put this simply over here to complete the process, complete the calculation. This Q

double prime is 2000 Watts per metre square, this H bar, H bar N, L2, L1, we put all the

values in here that you have calculated, so after this, plug in all these values, you would get N

A double prime to be 9.28 into 10 to the power - 4 KG per metre square per second or if you

want express it in terms of KG moles by dividing it with the molecular weight, you get this

value. 

So essentially what you then what you see here is the advantage of using the analogy. Since

the Prandlt number and Schmidt number equal and Reynolds numbers also equal since the

length scale  is,  length  scale  and the velocity,  they  vary in  such a  way that  length times

velocity remains constant, Reynolds numbers are also equal. So the functional form of the



dimensionless  concentration  and  dimensionless  temperature  would  be  identical  and  by

looking at the root laws which would give you the mass flux or the heat flux.

Namely Newton’s law of cooling and something similar to Newton’s law of cooling where

the convective heat transfer coefficient H is replaced by H bar, that HM where HM is the

convective mass transfer coefficient. And in the 1st case for heat transfer, it is multiplied by

temperature difference, in the 2nd case, mass transfer, it is multiplied by the concentration

difference. So you can find out what is the ratio between mass flux by heat flux and on the

right-hand side, whatever you have, the only unknown here is the heat transfer coefficient

based on mass and heat transfer coefficient based on, heat transfer coefficient, it is simply

convective heat transfer coefficient. 

By analogy everything, this ratio is known to you, H bar M by H bar and this is simply, by

one step plugging in the values, you would get the unknown mass flux which you would

obtain on a similar surface where only mass transfer is taking place, no heat transfer takes

place.  So by performing supposedly a  relatively easy experiment  involving heat  transfer,

measuring temperature, you would be able to predict precisely what would be the mass flux

from a similar object without doing the mass transfer experiment. So this specific problem

highlights the utility of heat and momentum, heat and mass transfer analogy. So we would

solve similar such problems which would also involve a little bit of thinking and modelling in

the subsequent classes. 


