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Boundary Layer-Analogy.

I will quickly go through what I have covered in the last class as a prelude to establishing the

different  analogies  between  heat,  mass  and  momentum  transfer.  So  we  started  with  the

conservation  equations,  nondimensionalized  those  conservation  equations  using  standard

nondimensionalizing parameters and there we saw that the form of the equation are slowly

coming to mimic one another. And more importantly, the emergence of dimensionless groups

out of the nondimensionalizing process is automatic. So what you are going to see is, you

would be able  to  identify the dimensionless  similarity  parameters  which are going to  be

relevant in each of these cases. 

So we saw that Reynolds number is going to be important in the case of momentum transfer,

both Reynolds and Prandlt number in the case of heat transfer and Reynolds and Schmidt

number in the case of mass transfer. So we wrote those equations and we also wrote what are

the  boundary  conditions  which  can  be  used to  solve  this  specific  process.  And we have

divided the boundary conditions into 2 different types of categories, one is what is going to

happen at the free stream and what is going to happen at the intersection, at the interface

between the liquid and the solid surface. 
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So one, one set of boundary condition for the solid surface, the other is in the free stream.

And we would, we have written the similarity parameters for each of these processes. So this

is  what  we  have  seen,  starting  with  the  conservation  equation  which  is  the  momentum

transfer, the Naviar Stokes equation, the X component of Naviar Stokes equation written for

flow inside the boundary layer, so utilising all the other missions and approximations, the

boundary  layer  approximations  that  I  have  discussed  before.  And  the  circled  one  is  the

dimensionless, similarity parameter which is Reynolds number. 

The sets of boundary conditions at wall and free stream are no slip and the velocity is equal,

velocity is going to be, velocity is going to be equal to U infinity by V where U infinity is the

velocity, is the free stream velocity at the given X location and V is the approach velocity. For

the case of the flow over a flat plate, in absence of any DP D X, that is pressure gradient, U

infinity would be equal to V. But in order to maintain the gentle nature of the boundary

conditions we have kept it in the form of U infinity by V. Now next let us look at the energy

equation which again is same, that is the advection, these terms are on the left-hand side and

the diffusive terms, diffusion term is on the right-hand side and again the circled one would

resolve  into  the  product  of  Reynolds,  I  mean  the  similarity  parameters  of  the  Reynolds

number and Prandlt number. 

The  conditions  are,  as  since  we  have  defined  T star  in  this  form,  so  the  value  of  the

dimensionless temperature at any axial location on the solid plate, that is Y equal to 0 would

be 0 and the temperature at a point far from the solid plate would be equal to 1. Similarly for

mass transfer, species balance equation, this is nothing but Reynolds and Schmidt number,

the conditions are identical as this. So these equations are more or less look like the same,

except  they  have  Reynolds  number  1  by  Reynolds  number,  1  by  Reynolds  and  Prandlt

number and 1 by Reynolds and Schmidt number. 
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And if you look at the boundary conditions, they also look the same, except that in the case of

flow over  a,  flow over  a  solid  surface  hydrodynamic  boundary layer,  this  dimensionless

velocity at infinite distance, at a large distance from the solid plate would simply be equal to

U infinity by V. So with this we proceed with the functional form of the solutions, we saw

that the velocity is going to be a function of F1 of X, Y, Reynolds number and DP DX. And

the shear stress is velocity gradient multiplied by mu at Y equals 0 since I am specifying the

value of Y. So and then nondimensionalizing it, so the function, the form of CF, the friction

coefficient by definition is Tao S by half rho V square and when you put this form of Tao S in

here, what you get is this is the form of the friction coefficient. 

And the friction coefficient would obviously be a function of X star, it will not be a function

of Y star since value of Y, specific value of Y is mentioned here. It is going to be a function of

Reynolds number but if you find the geometry, if you prescribe geometry, then DP star, DX

star, the pressure gradient can be obtained by through the use of let say Bernoulli’s equation

in the inviscid flow region outside of the boundary layer. And P is a function, P is not a

function, P is a function, P is not a function of Y, so therefore the pressure difference between

these 2 points outside of the boundary layers that can be solved, that can be evaluated through

the use of inviscid flow theory would be equal to the pressure difference between the 2 points

inside the boundary layer, since P is not a function of Y. 
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So CF for a prescribed geometry is going to be function of X star and Reynolds number.

Similarly we started with the energy equation and we identified that T star is going to be all

this,  additional  would  be  Prandlt  number  and  then  we  start  with  the  equality  of  the

convective,  equality  of  the  convection  and  conduction  at  the  solid  liquid  interface  and

therefore from that we obtained the value, expression for H and finally the expression for

Nusselt number which is the dimensionless pressure gradient at the wall, that means at Y

equals to 0. Since I am specify, I have specified the value of Y, so Nusselt number would be

function, the functional transform of Nusselt number should contain which I call it as F4, X

star, Y star is specified, Reynolds number, Prandlt number, and if I specify the geometry, then

DP DX would not appear in the functional form of the Nusselt number. 

So this  is  what  Nusselt  number  is  and if  you find the average  value,  that  means length

average  value  of  Nusselt  number,  so  your  X are  would  also  not  be  there  since  you are

integrating this from 0 to X star, from 0 to L, the entire length of the of the surface. So in that

case Nusselt number, average value of Nusselt number is simply going to be function of

Reynolds and Prandlt. 



(Refer Slide Time: 7:33)

 

Exactly the same way I defined what is HML by DAB, that is Sherwood number starting with

the functional form of C A star, the same way as in heat transfer where HM is the convective

mass  transfer  coefficient.  So  and  this  is  Sherwood  number  is  by  definition  then  is  that

dimensionless concentration gradient at the interface. Therefore for a prescribed geometry,

Sherwood number would simply be, I call this function as F7 which we still do not know but

the F7 should contain extra, Y star would not be there, it is Reynolds number and Schmidt

number. 

And same as in the case of average value of Nusselt number, if I find out what is the average

value of Sherwood number,  that means if  I  integrate over the entire length,  I  denote the



convective mass transfer coefficient as H bar M, unlike this H M, so H bar M by DAB, which

is the average Sherwood number, it would be a function of Reynolds and Schmidt. 

So just to show these 2 together, here you can see that the form of Nusselt number, F5 and

F8, in one case it is Reynolds and Prandlt, in the other case is this Reynolds and Schmidt.

And if you compare that with CF, the friction coefficient rather CF REL by 2, this would

simply be equals F2, X star, REL. Okay. So these 3 F2, F4 and F5, F2, F5 and F8 together

would give you some idea about how we can obtain, how we can try to get a relationship

between, relationship between all these things. If I concentrate on let us say F1 and F3, I

think it is visible. 
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So F1, what I have in here is the functional form of velocity, F3 is the functional form of

temperature and similarly I have F6 in here which is the functional form of the dimensionless

concentration, dimensionless concentration. Now let us go back to this equation, this case

again before we go into Reynolds analogy. I have these as conservation equations, in this I

have 1 by Reynolds times Prandlt, in here I have 1 by Reynolds times Schmidt, so this is

nothing  but  1  by  Reynolds  times  Prandlt  number,  this  is  1  by  Reynolds  times  Schmidt

number. So forgetting about this part, if I only consider these 3 cases, then I can say that these

3 equations well be similar only when the Prandlt number is equal to 1 and Schmidt number

is equal to1. 

And for the case where DP DX is 0, that means we are dealing with a flat plate. So think

about the implication of our assumption of our statement here. I would like to make these 3



equations same, identical, all are going to have an advection term on the left and the diffusion

term on the right. And when I can, I can say that we 3 equations are equivalent? Only when

DP DX is 0 because you do not have any DP DX in these 2 equations, so DP DX has to be 0.

And DP DX to be 0, signifies that the flow is taking over a flat plate. And you now you see

these  other  terms  which  are  there.  The  1st equation,  momentum equation  contains  1  by

Reynolds number, the energy equation contains 1 by Reynolds number times Prandlt number

and the 3rd equation, species balance equation contains 1 by Reynolds number into Schmidt

number. 

So in order for these 3 equations to become identical, the additional constraint that one has to

put is that Schmidt number is equal to 1 and Prandlt number is equal to1. So only in that very

restrictive condition where Prandlt number of the fluid which is which is flowing, having

momentum, heat and mass transfer, its value should be equal to 1 and Schmidt number should

be equal to 1 and the flow is going to take place over a flat plate such that the pressure

gradient,  DP star  DX star  is  equal  to  0.  When these conditions  are  met,  the momentum

transfer equation, the energy transport equation and the species transport equation, all will

look identical. 

So in addition if we can show that the boundary conditions are also identical, then these 3

systems, one having heat transfer, the other having momentum transfer and the other one

having mass transfer, these can be expressed in terms of the, of same expressions. That is

what analogy is all about, such that the expression, if it can be obtained by experimental or

other means for one type of transport process, I should be able to use it for the other transport

process by simply making certain obvious substitutions. So once again these 3 equations are

now identical, since I have assumed DP DX to be 0, the Prandlt number is equal to 1 and the

Schmidt number is equal to 1. 
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 Now let us look at whatever, what happens to the boundary conditions. U star 0, T star 0, CA

Star 0, so at the wall the 3 boundary conditions are identical. At the free stream, CA star is

equal to 1, T star is equal to 1, however U star which was equal to infinity, U infinity by V

now would be equal to 1 since I have assumed DP D X to be equal to 1. And DP DX to be 1,

essentially show, essentially is the case of flow over a flat plate. And we understand for flow

over a flat plate, the value of the approach velocity would be equal to the value of the free

stream velocity. So by making the assumption DP star DX to be equal to1, what I am, what I

am doing over here is that I am making all the boundary conditions identical, both at the wall

as well at the free stream. 

So this would be, this would give us the 1st type of analogy that we are going to get but once

again when the equations are same and the boundary conditions are same, then all these 3

systems would be called dynamically similar. So if 3 equations, these 3 governing equations

are dynamically similar, then it allows us to use the correlation for 1 as the correlation for 2 nd

and for the 3rd and provided we simply use the right kind of variables for which are specific to

the  heat  transfer,  mass  transfer  or  momentum transfer  process.  So the analogy,  the  most

restrictive form of analogy that one can choose is for the case where the flow is taking over a

flat plate, it is laminar flow and the value of the dimensionless similarity parameters, namely

Prandlt number and Schmidt number are equal to1. 



(Refer Slide Time: 16:15)

 

This analogy is called the Reynolds analogy and as I mentioned it is the most restrictive

analogy form of the analogy between heat, mass and momentum transfer. So we would start

1st with the Reynolds analogy which simply tells you that it is going to be valid when DP star

by DX star is equal to 0 and Prandlt number equal to Schmidt number is equal to 1 and then

the conservation equations are all of the same form. So this would give you, conservation

equation is same, boundary condition is same, so solutions, solutions of U star, T star and CA

star, the dependent variables, must be equivalent. 

So this  is  what  analogy is  and if  you look at  your  class  notes,  the  U star  is  essentially

expressed in terms of function F1, T star was expressed as F3 and CA star was expressed in

terms of F6. So F1 must be equal to F3, and is equal to going to be F6. So since these,

solutions of these are equivalent, same is true for CF, the friction coefficient, Nusselt number

and Sherwood number. So what are the coefficients for friction, so CF is CF times REL is F2,

Sherwood number is equal to, Sherwood, sorry Sherwood number is equal to F7 and Nusselt

number I think is going to be equal to F4. 

So these are going to be equal, going to be the same, so therefore F2 would be same as F4 as

same as F7. So CF times RE, so F2 is nothing but, if you again see the definition of F2, F2 is

CF REL by 2, F7, F7 is Sherwood number and F4 is Nusselt number. So if F1, if F2, F4 and

F7 are equal,  which tells  you that  CF REL by 2 is  equal  to  Nusselt  number is  equal  to

Sherwood number. So this is the relation that you would get in the case of Reynolds analogy.

Sometimes this analogy is slightly modified, slightly modified, that it is expressed as CF by 2

equals Nusselt by Reynolds equals Sherwood by Reynolds, REL and since we understand



that PR is equal to SC is equal to 1, therefore nothing the generality of the solution, generality

object which would not be disturbed if I bring in these 2 terms here as well. 

So initially from here what you get is CF by 2 equals Nu by REL and Sherwood by REL but

you just bring in these, bring in these additional numbers knowing fully well that in order to

have Reynolds analogy I have assumed Prandlt is equal to Schmidt number and its numerical

value is equal to 1. So therefore I am expressing CF in terms of Nusselt, Reynolds, Prandlt or

Sherwood, Reynolds, Schmidt would not change this, the generality of this. And this Nusselt

by Reynolds times Prandlt, this, this is called the Stanton number and Sherwood, Reynolds,

Schmidt is again also called Stanton number, Stanton number and this is either called Stanton

number for mass transfer. 

So this is Stanton number for heat transfer and this is Stanton number for mass transfer.

These are just definitions, so a more generalised and modified form of Reynolds analogy is

written as CF by 2 is equal to Stanton number based on heat is equal to Stanton number based

on mass.  So this  is  the form of Reynolds  analogy that  can be used when you have this

condition, DP DX to be equal to 0, Prandlt number is equal to 1 and Schmidt number is equal

to  1.  So  this  analogy  relates  the  key  engineering  parameters  of  velocity,  thermal  and

concentration boundary layer. 

So the significance of this simple relation is enormous. It tells you now that the engineering

important parameter, for example the friction factor in the case of momentum transfer, the

heat transfer coefficient, convective heat transfer coefficient and therefore Nusselt number in

the case of heat transfer and convective mass transfer coefficient or its dimensionless form in

Sherwood number, they all can be expressed, they all are related by simple equality sign. So

therefore if and we know we have expressions for CF in laminar flow, expressions for CF in

turbulent flow. We have some idea of what is going to be the expression of heat transfer in

laminar flow but we have not studied heat transfer in turbulent flow inside the boundary layer

or mass transfer in turbulent flow inside the boundary layer. 

And we do not need to, because with this analogy available to me and with our knowledge of

the exact expressions for CF in turbulent flow as well as in laminar flow and if I use this

analogy, what you see here is CF by 2 is equal to Stanton number based on, Stanton number

based on heat or heat transfer Stanton number. So an expression for CF in turbulent flow is

available, so with this  analogy, then I should be able to obtain an expression for Nusselt



number or for that matter an expression for Sherwood number for the case of turbulent flow

using a simple analogy which is known as a Reynolds analogy. 

So the hydrodynamic boundary layer is well researched, it is comparatively easier to analyse,

since  as  I  as  I  said  before,  the  heat  transfer  and  the  mass  transfer  are  coupled  to  the

hydrodynamic  boundary  layer  but  the  hydrodynamic  boundary  layer  solution  of  the

hydrodynamic  boundary  layer,  the  equation  of  the  hydrodynamic  boundary  layer  is  not

coupled  with  the  temperature  with  the  concentration  as  long  as  the  properties  remain

constant. 
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So which would become even more clear if you look at this expression once again. Here I

have the velocity  but  nobody this  expression,  either the temperature or the concentration

appear. On the other hand if you look at the thermal boundary layer equation or the species

boundary layer equation, you have the presence of U in both cases. So in that way the, this

momentum transfer can be solved independent to the solution of the thermal boundary layer

or the species boundary layer. 

So that is the reason why that this has been explored in greater details, both for the case of

laminar flow as we have seen in the case of Blassius solution and the case of the turbulent

flow in which we have used the one 7th power law, the Blassius correlation and so many other

things which gave us a compressive idea of the variation of the engineering parameters which

is friction coefficient for the case of laminar as well as turbulent flow. 



What we do not  have  that  luxury in  the case of  heat  transfer  boundary layer  or  species

boundary layer, they are more complicated because of the appearance of U and V in here. So

the simultaneous solution of these 2 are needed. But we do not have to do that anymore, since

we have the Reynolds analogy which directly relates Nusselt number with the expression of

the  friction  coefficient  either  in  laminar  flow or  in  turbulent  flow.  So an  expression  for

Nusselt number can thus be obtained from the expression of CF in the various types of flow. 

So  that  is  big  big  advantage  but  let  us  think  about  the  disadvantage  now.  What  is  the

disadvantage? The conditions which I have 2 specify not to obtain this Reynolds analogy is

extremely strict,  it  is unrealistic. Because it is unlikely that you are going to get a liquid

whose Prandlt number equal to1 or whose Schmidt number, and its Schmidt number is also

equal to1. That is that is a very restrictive unrealistic boundary condition to have. So what is

the solution? You may have DP DX to be equal to 0 if it is a flow over a flat plate and the

case of turbulent flow, the pressure drop, it does not depend on the, it does not depend that

much on the shape of the surface over which the flow is taking place. 

So DP DX to be equal to 0 is also approximately valid for the case of turbulent flow. So we

need not worry too much about DP DX to be 0 or nonzero, specially for the case of turbulent

flow but we have to think about the value of Prandlt and Schmidt number which are going to

be,  which are not going to be equal to1 and it  can have various values,  for example the

Prandlt number for air is about 0.7 and, that is large, there is a significantly large range over

which the Prandlt number and Schmidt number of commonly encountered fluids can be. 

So these numbers can lie over a significantly wide range for most of the common fluids that

we encounter and therefore a correction to the Reynolds analogy must be provided which

would allow the use, the exception of this analogy for real fluids. That is, that is done through

the use of extensive experiments and with an empirical approach, the new analogy, modified

analogy has been proposed which is now available over a large range of Prandlt and Schmidt

number. 
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So that is what we are going to look at next which is called the modified, it is also called

Chilton,  both are same, they are modified Reynolds analogy or Chilton Colburn analogy.

What it says is that CF by 2, it was Stanton number based on heat which is only valid for

Nusselt number equal, for Prandlt number equal to 1 but the range of this can be extended if a

Prandlt number is added to this relation which is called this is called JH and its extends the

Prandlt number from 0.6 to about 60. So this is the Prandlt number correction factor added to

Reynolds analogy to modify it for a wide range of Prandlt number also called as Chilton

Colburn analogy. 

And for the case of mass transfer, it is going to be CF by 2 is equal to Stanton number based

on mass and Schmidt number correction factor exactly the same way as the case of Prandlt

number is added and this product is, this is called JM and it extends the value of Schmidt

number  from 0.6 to  Schmidt  number  from 0.6 to  300.  Therefore  the  modified Reynolds

analogy or Chilton Colburn analogy which is valid over a wide range of Prandlt number and

Schmidt number is expressed as CF, the friction factor by 2 is equal to Stanton number times

Prandlt number to the power 2 3rd equals Stanton number based on mass, Schmidt number to

the power 2 3rd or CF by 2 is equal to JH equal to JM. So these, this is the Chilton Colburn

analogy and J is called the Colburn J factor. 

So this is the analogy which we are going to use for all our calculations in the subsequent

exercises that we are going to see. So this is a unique relation which connects all 3 transport

processes  together.  And  it  gives  a  tremendous  advantage  to  experimentalists,  practising

engineers and so on where one set of experiment which is possible, let us say the situation is



such that you can measure temperature but you cannot measure concentration. Okay. So on a

prototype which is , where the actual is going to our experience both heat and mass transfer

and you would like to know how, what would be the relations to be used, what are the design

equations for that. 

You build a prototype, you do an experiment but while doing the experiment for some reason

let us say you see that it is possible to do measure the temperature and therefore do the heat

transfer  experiment  but  you cannot  measure  concentration,  so  therefore  no  mass  transfer

prototype experiment can be obtained with the system that you have right now. So what you

do is you perform the heat transfer experiments on the prototype, obtain a relation between let

us see Nusselt number, Reynolds number, Prandlt number, whatever from your experimental

data. Now what expression are you going to use for mass transfer? Since you cannot perform

any mass transfer experiments, then you are simply going to use Chilton Colburn analogy. 

Make sure that the fluid you are dealing with is having the Prandlt number and Schmidt

number  within  the  range  specified  for  Chilton  Colburn  analogy  and  simply  write  the

expression,  equivalent  expression,  equivalent  mass  transfer  experiment,  mass  transfer

expression  of  the  heat  transfer  expression  that  you  have  obtained  experimentally.  So  it

reduces your work significantly,  it  gives you a tool to predict  the performance,  the mass

transfer performance of the device without even doing a single experiment on mass transfer.

So the utility of Chilton, these analogies are, they are extremely useful to all of us. 

So whenever you think of an analogy, whenever you try to apply an analogy, always keep in

mind what is the range over which, range of these parameters over which this this analogy

can safely be used. And if you are satisfied, then go ahead and use this analogy and it would

really give you the expression for heat transfer coefficient and mass transfer coefficient in

turbulent  flow  without  solving  for  the  complicated  boundary  layer  equations,  governing

equations that you have starting from the energy equation or starting from the species balance

equation. 

So what we will do in the next class is, just to give you a brief few more ideas, fundamentals

about the different thickness, the thicknesses of the different layers, how they are related, for

example what is the, what is the thickness of the hydrodynamic boundary layer, the ratio of

the hydrodynamic boundary layer and heat transfer boundary layer or mass transfer boundary

layer and so on. But after that we are going to solve different problems, various problems

which directly use the concept of analogy and that would clarify your concepts even more. 


