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Convection Transfer Equations.

So we will start the last part of this course, last major part of this course which is to see the

analogy between heat, mass and momentum transfer and to see under what conditions we can

use the correlation developed for one type of flow can be used interchangeably as the relation

for transport in another type of flow. For example can heat transfer equations, if they are

derived can they be used for mass transfer as well and vice versa. So we would see that it is

possible under some special cases and if we can add some approximations to it, then this type

of analogy will remain valid over a large range of operating conditions to be characterised by

the grouping of them together leading to the formation of the dimensionless groups. 

So some of the dimensionless groups would be relevant for heat transfer, for momentum

transfer and for the mass transfer process. So the 1st job of would be to identify what these

different  dimensionless  groups can be and we should start  fundamentally  such that  these

dimensionless  groups  would  appear  automatically  looking  at  the  governing  equation  for

transport, for any type of transport. Now whenever we talk about transport, we also know

from our study so far that all these transport phenomena are going to be located, going to be

going to be prevalent in a very thin layer close to the solid surface where we have a solid

fluid interface. 

So these boundary layers the heat,  mass and momentum transfer are going to take place

within this thin boundary layer and outside of this boundary layer the flow can be treated as

inviscid where the temperature will remain constant or whether concentration will be equal to

the  bulk  concentration  and therefore  it  is  going to  remain  constant.  So  we are  going to

concentrate more on the thin boundary layer that forms close to a solid surface. And write the

equations which are valid inside the thin boundary layer and working with these equations,

can we identify the relevant dimensionless groups and under what conditions the relations of

let us say velocity or of temperature can be used as a relation which would give rise to an

expression for concentration distribution . 

So  the  3  major  parameters  which  will  be  of  relevance  here  are  the  velocity  inside  the

boundary  layer,  the  temperature  or  its  variation  inside  the  boundary  layer  and  the

concentration  variation  inside  the  mass  transfer  boundary  layer.  We also  realise  that  the



thicknesses  of  these  3  layers  are  going  to  be  different.  So  whether  the  thickness  of  the

hydrodynamic boundary layer is going to be equal or different from that of thermal boundary

layer would be covered by again a parameter that should automatically appear in the equation

describing the growth of the hydrodynamic boundary layer  or the growth of  the thermal

boundary layer. 

Of these 3 we have extensively studied the behaviour of the momentum boundary layer or

hydrodynamic boundary layer. That we could do that because the hydrodynamic boundary

layer, it only has the velocity in X and Y direction and variation of velocity with either X or

Y. We are only dealing with two-dimensional steady flow, so the study was a function of X

and Y. So the Naviar Stokes equation which in its special form for use inside the boundary

layer  will  therefore  contain  VX,  Dell  VX  Dell  X,  VY,  Dell  VX  Dell  Y and  kinematic

viscosity nu times Dell square VX Dell Y square. 

This was the starting point for the Blassius solution of hydrodynamic boundary layer under

laminar  flow condition.  So this  partial  differentiation  equation  along  with  the  continuity

equation which is simply Dell VX Dell X + Dell VY Dell Y equal to 0, so these 2 equations

were solved simultaneously by the  introduction of  a  stream function,  of  a  dimensionless

stream function.  So the entire equation was not converted in the dimensionless form and

instead of the 2 independent variables X and Y, we introduce the combination variable and by

an order of magnitude analysis we could get what would be the approximate form of this

combination variable which we have denoted as Eta. 

So with the help of of this combination variable, the partial differential equation describing

flow inside  a  hydrodynamic  boundary  layer  can  be  converted,  could  be  converted  to  an

ordinary  differential  equation,  higher  order  nonlinear  ordinary  differential  equation.  This

higher order nonlinear ordinary differential  equation was then solved numerically and we

obtained a  table  containing the  value  of  the dimensionless  variable  and the value of  the

stream function or its gradient in terms of the defined dimensionless independent parameter

eta. 

So with the use of this table, the numerical results present in this table, we could obtain what

is the expression for Delta in terms of Reynolds number and X where X is the axial distance

and we could also obtain what is the shear stress exerted by the fluid on the solid plate. So

this type of analysis even though complicated was possible only for the simplest situation,

that is laminar flow of a Newtonian fluid over a flat plate in absence of any pressure gradient



such that the approach velocity is equal to the free stream velocity which is the velocity

outside of the boundary layer. 

We  then  used  an  approximate  method,  since  any,  any  other  situation,  for  example

introduction of turbulence in the system could not be handled by an analytic solution or even

a numerical solution because it is so complicated and it is so difficult, it is almost impossible

to obtain an universal velocity profile which will be valid near the wall, far away from the

wall or in the intermediate region or the transition region between the the faraway part by the

flow can be treated as almost inviscid and to the point where the flow is very close to the

solid surface and it can be treated as if it is terminated by viscous forces only. 

And  the  transport  of  momentum in  turbulent  flow will  not  only  be  due  to  the  velocity

gradient, there would be the formation of eddies which will carry, which will cause additional

transport  of  momentum  between  layers  of  fluids.  So  these  additional  complicacies  of

turbulent flow prompted us to use an approximate solution method, approximate solution for

hydrodynamic  boundary  layer  which  was  momentum  integral  equation,  which  we  have

discussed again in detail. And there we saw that we need, we, what the approach, the integral

equation,  the  momentum  integral  equation  would  give  rise  to  an  ordinary  differential

equation,  the only requirement  is  we have to provide,  we have to  suggest a form of the

variation of velocity with distance from the walls. 

So the dimensionless velocity in the X direction, VX by capital U where capital U is the

phrase velocity. So that VX by U is the dimensionless velocity is expressed as a function,

could be polynomial, for example A + BX + CX square, A + BY + CY square where Y is the

distance from the solid wall. The constants A, B and C are to be evaluated with the use of

appropriate boundary conditions. So the boundary conditions were no slip at the liquid solid,

at the fluid solid interface and as we move far from the, from the from the plate, what you

would see that that the edge of the boundary layer, the velocity, the axial velocity V would be

equal to the free stream velocity and the velocity profile inside the boundary layer would

approach this  free stream velocity  asymptotically  with ,  that  means the velocity  gradient

would disappear at the, at the edge of the boundary layer. 

So dVX dY at Y equal to delta would be 0. So with the use of these boundary conditions

which could open the profile and then we have seen that one can use one 7th power law which

is completely empirical to express the velocity in turbulent flow. But we realised that what

are the shortcomings of use of, use of the one 7th power law that it cannot be used to obtain



the shear stress at the liquid solid interface since it gives you an infinite velocity gradient at

the solid liquid interface. 

So we handle that part of the momentum integral equation using Blassius correlation which

we have obtained from our definition of friction factor and so on. So the left-hand side of the

momentum integral equation was solved using Blassius correlation friction factor and so on,

the right-hand side which involves integration of the velocity profile over the entire thickness

of the boundary layer, there we could substitute the one 7th power law for the velocity, for the

velocity in the X direction. 

So with these approximations and assumptions we finally obtain the variation of delta, that is

the thickness of turbulent boundary layer as a function of operational parameters, for example

what is the imposed velocity and property imposed velocity, the geometry of the system in

terms  of  the  length  of  the  plate  over  which  this  flow takes  place  and relevant  physical

properties which are mu, the viscosity and rho, the density.  So as in the case of laminar

boundary layer, the boundary layer growth in turbulent boundary layer was also expressed in

terms of Reynolds number. 

But it was shown that the growth of the turbulent boundary layer is going to be much more

faster than that of that laminar boundary layer. And with this knowledge of the growth of the

boundary layer we were also out able to obtain what is going to be the shear stress, what

event to be the friction coefficient for the case of turbulent flow and now we have the laminar

flow results and the turbulent flow results and we could see the variation of these parameters,

relevant engineering parameters, for example the friction factor in laminar flow and turbulent

flow and the growth of the turbulent, boundary layers in laminar flow and in turbulent flow. 

But in the case of the development of turbulent flow it has been assumed that the flow is

turbulent from the very beginning. That means at the beginning of the plate, the flow starts as

tablet which we know that it does not happen. You really have to cross certain length, length

which corresponds to a Reynolds number to be equal to 5 into 10 to the power 5, so L times

V where V is the velocity outside the boundary layer, L times V times rho divided by mu,

where mu is the viscosity is equal to 5 into 10 to the power 5 and the value of L that you get

by this equality, that Reynolds number is equal to 5 into 10 to the power 5 is the length over

which the flow will remain laminar and beyond that line the flow is going to be turbulent. 



But our analysis of turbulent flow has assumed that the flow is going to be turbulent from the

very beginning of the plate. Therefore to account for mixed flow cases where the flow is

initially  going  to  be  laminar,  followed  by  turbulence  after  you  reach  a  certain  value  of

Reynolds number, the relations of friction factor that were obtained for turbulent flow were

modified and we got relations for mixed flow which we have discussed previously as well.

We have also understood that the parameters of interest in many cases is not only the friction

factor but it is the drag coefficient. 

And the drag is of 2 types, one is friction drag and the 2nd is pressure drag. So we have also

obtain the relations from the expression of CF, we have obtained the expressions for Cd

which is the drag coefficient. Then we have proceeded to solve for the laminar flow heat

transfer cases and there we saw the presence, the emergence of the coupling between the

momentum transfer and the heat transfer by the appearance of velocity in the thermal energy

equation. So the thermal energy equation was VX dell T dell X + VY dell T dell Y is equal to

the thermal diffusivity which is mu by rho CP times dell 2T by dell Y square in absence of

any heat generation. 

So  these,  in  order  to  solve  for  this  equation,  one  must  know VX,  etc.,  B,  the  velocity

components which are present inside the boundary layer. So the solution, the hydrodynamic

part  of the boundary layer has to be solved up Priory before you even start  to solve the

thermal boundary layer equation. And there where we nondimensionalized it, like previously,

we saw that we have, we saw the emergence of Prandlt number which would appear in the

hydrodynamic boundary layer equation. 

So once a value, a specific value of Prandlt number was chosen and with the help of the data

that we have in terms of, from the momentum boundary layer, momentum boundary layer

solution for one specific value of Prandlt number, the temperature profile, more importantly

the temperature gradient at the solid liquid interface could be obtained. So you have a value

of the dimensionless temperature L of dimensionless temperature by dell Eta where Eta is the

dimensionless variable at Eta equals 0, which signifies that it is on the solid surface, this

engineering  important  parameter,  the  temperature  gradient,  the dimensionless  temperature

gradient at the solid liquid interface could be expressed as a function of Prandlt number. 

So dell T star by dell Eta at Eta equals 0 where Eta is the combination variable was expressed

in the form of Prandlt number to the power one 3 rd and a constant associated with it.  So

working with  this  fitted  value  of  the  solution,  one  would  be  able  to  obtain  what  is  the



expression for Nusselt number which is the, which is the most important parameter that one

use this in, one refers to in heat transfer, the Nusselt number for the case of laminar flow heat

transfer in a thermal boundary layer. So what we obtained was a Nusselt number relation

which equal to some constant into Reynolds, function of Reynolds number and a function of

Prandlt number. 

So this we have obtained within, within certain ranges of Prandlt number, as well as range

range of Reynolds number because the relation which we have obtained so far is only valid

for laminar flow heat transfer process. But how do we extend that to turbulent flow? The

same way we have done for heat transfer, similarly what should be able to obtain what is the

expression for the engineering parameter which is convective mass after coefficient and the

associated dimensionless group is the Sherwood number. So what Nusselt number is to heat

transfer, Sherwood number is to mass transfer. 

So if we have an expression for Nusselt number, using the same logic, same methodology, I

should be able to obtain an expression for Sherwood number for the case of laminar flow

mass transfer in the thin boundary layer from the nearby, it is the interaction of the fluid with

a solid surface. And as before the relation thus obtained would be valid only within a certain

range of a parameter that is equivalent to Prandlt number in heat transfer. So the number, the

dimensionless number which would see how they appear, the dimensionless number which is

equal  into  Prandlt  number  in  heat  transfer,  so  Prandlt  number  in  heat  transfer  and  the

corresponding number in mass transfer would be the Schmidt number. 

So the Schmidt number is mu, where mu is the viscosity by rho, density and d, diffusivity. So

Prandlt number and Schmidt number are same in terms of concepts, as the same way the

Nusselt number and Sherwood number are identical in terms of conceptual development. So,

so  far  what  I  have  described  to  you  is  whatever  we  have  done  in  the  treatment  of

hydrodynamic, thermal and concentration boundary layer. We were successful in obtaining a

solution, not a closed form solution better numerical solution for the case of hydrodynamic

boundary layer under laminar flow and an approximation would give us the value of the, of

those parameters for the case of turbulent flow. 

Extension of the laminar flow solution gave us the Nusselt number relation for heat transfer

and Sherwood number  relation  for  mass  transfer,  for  the  case  of  heat  transfer  and mass

transfer, for the case of laminar heat transfer, laminar flow heat transfer and laminar flow

mass transfer. But we were not successful, we still do not know how to converse, how to



extend  the  relations  of  laminar  flow  heat  transfer  and  mass  transfer  to  turbulent  flow

situations. 

Because in turbulent flow situation, the appearance of the eddies would make the situation

much more difficult to handle and therefore the way we have started, we have simplified the

situation in the, with the use of momentum integral equation, it is, it will not be easy or other

there must be a better way, looking at the similarities between these processes, can we derive

relations, or can we suggest proposed relations by simply looking at the relation, what we

have, that we have for the case of hydrodynamic boundary layer. 

So the CF, the friction coefficient or the Cd, the drag coefficient, the relations for which way

we have some confidence in the relations of CF and Cd, both in laminar and turbulent flow as

well as mixed flow in the case of hydrodynamic boundary layer, is there a way extend these

relations without excellent going into the complex mathematical treatment of turbulence in

heat transfer or in mass transfer? Is there a way? So the remaining classes will therefore be

devoted to find this link, find the way by which we could connect all these processes. 

And once that is done, then we are going to solve certain interesting problems of heat transfer

results being applied to mass transfer and vice versa. So as, from our discussion so far, we

understand  that  the  convection  transfer  equations  inside  thermal  hydrodynamic  and

concentration  boundary  layers,  they  play  a  very  important  role  in  deciding  about  the

similarities between these transfer processes. So the 1st, our 1st job would be to examine these

equations, to examine the development of these convective transport equations for all these 3

transport  operations  in  greater  detail  and to  try  to  see  where we can  start  our  similarity

exercise. 



(Refer Slide Time: 23:10)

So the 1st thing that we are going to do here is the convection transfer equations that we see

over here. So, we are going to start with two-dimensional steady flow situations and we know

the dimensionless velocity is defined as VX or VY divided by U where it is, U is the free

stream velocity, this is the dimensionless temperature, TS being the temperature of the solid

substrate, T infinity being the temperature at a point far from the solid wall or it is the bulk

temperature, CAS is the concentration of the component A on the surface and CA infinity is

the concentration of component A at a point far from the surface. And CAT and VX are the

concentration, the temperature and the velocity which are functions of both X and Y square X

denotes the axial distance and Y denotes the distance perpendicular to that of the solid plate. 

So let us see what are the approximations and special considerations we are going to invoke

in order to solve, in order to see these analogies, 1st is we are going to assume that it is an

incompressible fluid, the fluid properties are going to remain constant, there is, there is the

presence of a negligible body force, so the effect of gravity, etc. would be unimportant. It is a

non-reacting system, so therefore there is not going to be any production, any generation or

depletion  of  the  component  A by reaction  and it  is  also  there  is  going to  be  no  energy

generation, so the Q dot, the rate of production of energy is going to be equal to 0. 

And it is going to be a relatively, the flow velocities are going to be moderate and therefore

we are going to have negligible viscous dissipation or the viscous dissipation function Phi

would be equal to 0. So these are the, these are the special considerations which we are going

to use in order to tackle the problem of simultaneous heat, mass and momentum transfer and

our starting point would be the convective transfer equations in the form of equations inside



the boundary layer. So, what, what we what we then do is, we are going to see what are the

approximations, boundary layer of vaccinations that we have used so far, we are, we have

already used that U, the velocity in the axial direction is going to be very large, in terms, in

comparison to the component of velocity which is perpendicular to the direction of flow. 

And variation of axial velocity with Y is going to be significantly larger than variation of the

velocity with respect to X, so dell U dell Y would be much more significantly larger than dell

U dell X and it is also going to be very large compared to dell V dell Y and delta V dell X. So

the X component of velocity, the axial velocity, the change of rate of, rate of change of axial

velocity with distance from the solid wall is going to be significantly higher than dell U dell

X, dell V dell Y and dell V dell X and collectively together, these are known as the boundary

layer, boundary layer approximations for velocity boundary layer. 

The 2nd one is that we have is dell T dell Y is going to be quite large, very large compared to

dell  T dell  X.  So T the  temperature,  so the  variation  of  temperature  with respect  to  the

distance, the variation in temperature over the thickness of the boundary layer, dell T dell Y

would be significantly higher than the axial temperature, temperature temperature gradient

and this is the approximation with we are going to use,  which we have used before,  the

thermal boundary layer, which is,all these assumptions are reasonable since the thickness of

each type of boundary layer is very small. 

So since the velocity boundary layer is small, the variation in velocity over this variation in

velocity from a value equal to 0 due to no slip condition, on the solid and its velocity which is

a constant velocity, which is U throughout the rest of the boundary, throughout the rest of the

region outside of the boundary layer,  this  variation from 0 to  capital  U takes place over

everything region. So dell, so therefore the variation in velocity with respect to Y will be

significantly more than the variation in velocity of, of the variation in velocity with respect to

X. 

So vertical direction velocity gradient of the X component of velocity would be much more

as compared to the gradient in the axial direction. Using the same logic, same understanding,

the  temperature  varies  from TS,  which  is  a  sub,  temperature  of  the  solid  substrate  to  T

infinity, which is the temperature outside of the thermal boundary layer, this changeover takes

place over a very thin boundary layer. Therefore this gradient is going to be very large as

compared to dell T dell X. Using the same logic, one can write that dell CA dell Y is going to

be very large compared to dell CA dell X. 



So this is for the concentration boundary layer. So these are the approximations which we

have used and which we are going to use in our subsequent studies of the analogy. Some

special considerations here, one must say that, there will be situations in which, let say a

species transport is taking place from a solid surface, so would the species transport affect the

transfer inside the boundary layer? So let us say you have sublimation taking place from a

solid surface into air. So would this sublimation, that means therefore the velocity may not be

equal to 0 on the solid plate since you have a free stream, sublimation taking place. 

So if you have situations like that, is it reasonable to assume that the transport operations are

going to be unaffected of by the presence of this, by the absence of the no slip condition at

the solid surface. What has been shown, what has been observed is unless you are talking

about  a  significantly high transport  taking place,  transformation taking place at  the solid

liquid interface, all the concentrations that we had discussed so far will still prevail. So only

in  the  case  where  steam is  condensing on the  solid  surface,  there  in  the  additional  heat

transfer process is going to affect the growth of the velocity boundary layer or the growth of

the concentration boundary layer. 

But for most of the practical considerations, the effect of species transport can be neglected

while developing these boundary conditions. 

(Refer Slide Time: 30:54)

So now I think we can start the equations, the, I would simply write these equations for this

class and then we will discuss about their implications in the next class. So for the case of

velocity  boundary  layer,  we  know that  the,  we  have  the  continuity  equation  and  the  X



momentum  equation  inside  for  the  situation  inside  the  boundary  layer  and  this  is  the

continuity equation and what we have in terms of the X momentum equation is U dell U dell

X + V dell U dell Y, this is the X component of the Naviar Stokes equation. In utilising the

approximations boundary layers that I have discussed so far, the -1 by rho, dell P dell X + nu

del square U by dell Y square. 

So this is my equation number 1, this is the equation number 2. Now if you see carefully that

I have kept this dell P dell X comes in the X momentum equation signifying that I am not

restricting myself to the case of flow over a flat plate only. So as long as I have this dP d X in

here, my situation is therefore equally applicable for flow over curved surfaces as well. So

the equations in these forms refer to laminar flow over a solid surface that may be flat in

which case dP dX may be 0 or it is going to, it could be also for a curved surface with dP dX

which may not be equal to 0. 

Similarly,  so the energy equation would be equal to U times dell  T dell  X, U being the

velocity + V times dell T dell Y is equal to Alpha which is, which is the thermal diffusivity,

which is equal to K by rho CP dell 2T by dell Y square. And we have discussed already Y dell

2T dell  X square can be neglected in this  case,  since temperature varies  sharply with Y,

therefore this, since, this is valid, dell T dell Y is very much larger, large larger in comparison

to dell T dell X, therefore the transport, this, the right-hand side of the equation refers to

conductive  flow  of  heat  and  the  conduction  in  the  Y direction  will  far  outshadow  the

conduction in the X direction. 

Therefore there is going to be only one term. I do not have a Q dot which is heat generation

per unit volume, I do not have this term, as well as I do not have this term which is mu times

Phi where Phi is the viscous dissipation term. So these 2 terms are not present in the, under

the conditions that I am I am describing right now. So this is my 3 rd equation which is about

the energy equation inside the boundary layer and then for concentration boundary layer,

what we have then is U times dell CA dell X + V times dell CA dell Y and the transport,

relevant transport coefficient here is going to be DAB times dell square CA by dell Y square. 

So as before I am not considering any reaction which is taking place inside the boundary

layer, it is non-reacting system. Therefore the effect of reaction would be, would be 0. And

the transport of species A through diffusion in the Y direction will be significantly more than

the diffusion of A in the X direction so that dell square CA by dell X square term is neglected,



the same way I have neglected dell square T by dell Y square. So conduction and diffusion in

the Y direction predominates over conduction and diffusion in the X direction. 

And if you again notice that the transport coefficient here is kinematic viscosity which is mu

by  rho,  this  is  thermal  diffusivity  which  is  mu  by  rho  CP and  this  is  simply  the  mass

diffusivity. So these transport coefficients essentially will dictate how the diffusive transport

process is taking place. So these equations can then be used to identify key boundary layer

parameters,  the  similarity  parameters  as  well  as  the  important  analogies  between  heat

transfer, mass transfer and momentum transfer. 

So in the next class what we are going to do is we will start with these 3 equations, expressed

in dimensionless form, express them again, all the boundary conditions are also expressed in

dimensionless form and then we will try to see under what special conditions, the governing

equations will look identical, the boundary condition will be identical and if we have the

same  type  of  form  of  governing  equation  and  same  form  of  dimensionless  boundary

conditions, then the 2 systems, one having let say heat transfer and the one having mass

transfer, these 2 systems will become dynamically similar. 

So in order to become dynamically similar, the governing equations should be the same, the

boundary  conditions  in  dimensionless  form should be the  same and when the 2 systems

become dynamically  similar,  the  expression  for  one  type  of  process  can  be  used  as  the

expression for another type of process. In other words the heat transfer equations can be used

as mass transfer equations, as long as and this is important, as long as we change the relevant

dimensionless parameters of heat transfer by the equivalent relevant parameters for the case

of mass transfer. 

So whatever be the parameters of heat transfer, that we have to identify 1st and that for mass

transfer and for momentum transfer. And then we will have to see mathematically when these

3  different  types  of,  when  the  3  equations,  these  3  systems  along  with  their  boundary

conditions become dynamically similar. So that is what we would do in the next class. 


