
Transport Phenomena.
Professor Sunando dasgupta.

department of Chemical Engineering.
Indian Institute of Technology, Kharagpur.

Lecture-49.
Mass Transfer (Continued).

We would be discussing about the application of species balance equation which is nothing

but the conservation of mass for species A and we have seen how the conservation of species

A, B, C etc. when they have, when they are added together, it  would give the continuity

equation that we are familiar with. So when we see these species balance equations, there is a

temporal term which denotes the variation in concentration of one species at a with respect to

time and there are other terms which would talk about the convective mass transport  of,

convective transport of species A. And on the right-hand side we have the diffusive transport

of species A because of the existence of a concentration gradient. 

And the last  term that we have included, that we have identified to be something which

would result in a change in concentration of the species A as a function of time and position is

a generation term. So the most common generation term of the depletion term that we can

think of in mass transfer is through reactions. So the species balance equation is the, is a

statement of conservation, is a statement of conservation of mass, it has temporal terms, it has

terms containing velocities which denote the convective transport of mass which is due to the

flow and so on. So it would also be useful to start with a problem where we would see the

increasing difficulty of expressing the species balance through a shell mass balance approach.

So far the shell balance approach was very successful but as we have seen before with the

case  of  momentum transfer  and with  the  case  of  heat  transfer,  the  momentum geometry

becomes a bit more complicated and where we have to take into account the variation in the

measurable quantity which in this case is concentration is a function of more than one space

coordinates or if it is a function of time as well, then expressing that or expressing that in

terms  of  an  imaginary  shell  becomes  increasingly  difficult.  So  we  would  start  with  the

problem of diffusion in a falling film, so we have a wall and across along the side of the wall

a film is falling vertically. 

So let us say that liquid film, we denote that, the solvent, the liquid solvent here as B and

there is the gas present in contact with the falling film, let us say A. So A is the gas which is

going to be absorbed, which is going to be absorbed in the liquid which is B and then the

species of A will travel, will start its downward journey along with the film. 
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And we would try to find out what is the concentration distribution of A in the falling film or

more importantly what is the rate of absorption of A into the falling film and pictorially it can

be represented in this way. Where we have this as the solid wall, so this is a solid wall of a

width W and length L, then I have a liquid film which is falling, this wall is vertical, the

liquid film is coming down as there is a gas A which is going to be absorbed at the liquid,

liquid gas interface. And as the A molecules get into the falling liquid, it is going to start its

downward journey. 

But as it traverses, as it starts its onward journey, there exists a strong concentration gradient

on this side, so it will start to, start its convective motion downwards and there is going to be

a diffusive motion of the species in the X direction as well. So in the Z direction I have the

presence of both convection and since the concentration of A will vary depending on where

we are in the Z location. There could also A, a diffusive, a diffusive motion of A molecules in

the Z direction may also be setup. 

So the  system is  then  a  gas  being  absorbed in  the  liquid  and the  gas  starts  is  diffusion

convection motion in the falling film and we need to find out what is the concentration, what

is the concentration profile of A in the film and how much of A is going to get absorbed in the

falling film as a function of parameters which could be the geometric parameters like the

thickness, the width of the wall, the length of the wall, the diffusivity of A in the liquid B and

several other factors. So if we start with our shell balance approach, we have always assumed

shell to be the smaller dimension of the shell was the direction in which the concentration or

the temperature or the velocity is changing. 



But  if  you  if  you  think  of  the  figure,  the  figure  that  I  have  just  described  to  you,  the

concentration is changing out only with Z but it is also changing with Y, not only with along

the film but across the film as well. So if I have to choose a shell, it is going to be, it is going

to be of size delta Z delta X and it could be any Y because none of the parameters would

depend on Y. So coming back to the figure once again,  so this  is  my delta  Z,  since my

concentration changes with Z, so this is going to be one of the smaller dimensions, it is a

function of X since we have a concentration gradient in this direction. So delta X is going to

be another one, so what I would get is some sort of a rodlike structure in which this is delta Z,

this is delta X and it could be any let Y, you can take that to be Y as well. 

And across these faces, there is going to be convection and diffusive motion. So you can see

how complicated, I mean it is becoming, it is coming to a point where it is easy to make a

mistake in identifying what would be the mechanism by which the mass A, the species A

enters the control volume or leaves the control volume and so on. So this problem has been

shown, has been presented in Bird, Stuart and Lightfoot using this shell species balance. So

you can take a look at that but what we are going to do, since we know what is species

balance equations in,  what  we are going to  do now is  we are going to simply write the

equation, the species balance equation in the rectangular, in XYZ coordinate and in Cartesian

coordinate system and we will simply cancel the terms which are not relevant. 
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So we will skip the requirement of defining a shell, identifying the mechanisms by which the

species A enters into the shell and arrive at the governing equation. So this is going to be the

case, so I know that in Cartesian coordinate system, the species balance equation which is

also there in any of your textbooks is, this is the one which we have discussed in the last

class. So this is the concentration of species A as a function of time and since it has velocity

in it, so it is going to be the convective term, this has the diffusion coefficient, so this is the

diffusive term and we have the rate of reaction which consumes or produces A. 

So 1st of all we are going to make certain assumptions, 1st off there is no reaction, that means

that A does not react with B, so A and B are non-reacting to each other and we have a steady-

state which is, which is reached in this case. So we are dealing, we are handling, we are

solving the problem only at steady-state and the 3rd one is A is slightly soluble in B. That

means the mu is remaining a constant, so mu is the constant and the 4 th one is diffusion of A

into B is a slow process. Then what this simply tells us is that the penetration of A into the B

is taking place over a period of time, it is not a very fast, it is not a very fast penetration. 

So the and the other one is it is laminar 1-D flow such that we have velocity, so we have only

VZ which is not equal to 0, then the velocity in the Y direction and no velocity in the X

direction. So now I am going to expand this, if I expand this, it is simply going to be dell C A

dell T + VX + dell CA dell X + VY dell C A dell Y + VZ dell CA dell Z is equal to DAB dell

square CA by dell X square + dell square CA by dell Y square + dell square CA by dell Z

square. I am not writing the RA term since I have already assumed that there is no reaction



which is taking place, so there is no question of generation or depletion of A in the liquid gas

mixture when the gas gets absorbed in the liquid. 

So the reaction term is dropped. This would be 0 because of 2, the assumption 2, so these are

my assumptions. So because of assumption 2, it is a steady-state and this would be 0 because

of my assumption 5 which says it is a one-dimensional flow, so VZ is simply going to be, is

the only nonzero term, so this would be equal to 0. For the same logic I am going to get the

VY to be 0 as well since again it is laminar 1-D flow. But I understand that VZ is not equal to

0 and CA is going to be a function of Z. As I move in this direction, what I am going to see is

that at a fixed Z, the concentration is going to change with Z, it is going to increase with Z

since it is being absorbed by the liquid. 

So the entire left-hand side then I am going to have is VZ dell C A dell Z is equal to, then I

am going to think about the right-hand side. So in the right-hand side what I have then is

DAB will obviously be there and dell square C A dell X square because CA is a function of

X, so this term must be there + dell square C A + dell Z square. CA is not a function of Y

because it is independent, it is independent of Y, so the Y dependence of CA, this term can be

cancelled and what we have is this as the governing equation. So let us see what is the, what

are the significance of each term. 

So this is convection in Z, this one multiplied by DAB is diffusion in X and this multiplied by

DAB is diffusion in Z. So at this point I think we can make a judgement which is going to be

important  in  this  case.  There  is  substantial  convection  in  the  falling film because of  the

because of the velocity,  predominant  velocity  V that  in  the Z direction.  So molecules of

species A which are being absorbed in the liquid will travel towards the bottom at a fast, at a

at a high rate, so convection in the Z direction can never be neglected. So the 1 st term in here

must remain in my governing equation. 

CA as a function of X, the concentration of A at this point is probably the highest which could

be the interface solubility of A in B. And as I move in this direction, the concentration will

change very rapidly since A is slightly soluble in B, so the concentration of A will change

rapidly and therefore this term, the diffusive term, the diffusion of A in the X direction is

going to be, is going to be significant and cannot be neglected. However when we talk about

the diffusion in Z, the transport of A in the Z direction is principally by convection. There

would be slight change in concentration as we move in Z direction but the concentration



change is going to be insignificant as compared to the concentration change which you are

going to see in the X direction. 

So concentration change in Z direction is going to be small as compared to the concentration

change which you are going to see in the X direction. So if that is the case, then this term can

be neglected  as  compared to  this  term.  So the principal  the summary of  this  is  that  the

principal reason for A to gets transported in the Z direction is by convection and the way A

can get transported in the X direction is by diffusion and since convection predominates over

diffusion in the Z direction, therefore the contribution of diffusive species transport in the Z

direction can safely be neglected in comparison to convection in the Z direction or diffusion

in the X direction. 

So if you are comfortable with this, then we can proceed to solve it, we can try to solve it.

But it is important to understand what is important in any transport process. So which, in

which direction the convection is important, in which direction the diffusion is important, you

will always have to keep that in mind and try to use a sound logic to cancel, if possible the

contribution of a term with respect to relative to other terms present in the equation. So a

simple analysis, picturisation, understanding of the transport of the species in the X direction

and in the Z direction would ensure that we realise in the Z direction it is because of flow, the

motion in the X direction is because of concentration gradient. 

Concentration  gradient  present  in  the  Z  direction  is  very  small  in  comparison  to  the

concentration gradient which is present in the X direction. So diffusive transport prevails in

the  species  transport  in  X  direction  and  convective  transport  overshadows  any  diffusive

effect, any diffusive transport of the species in the Z direction. So this would result in the

compact  governing equation  which  you would  have  obtained if  you have  used  the  shell

species balance but as I, as we have seen it is going to be complicated. 
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It is much better to start with the species balance equation in the right coordinate system and

then  cancel  the  terms  from that  point  on  to  arrive  at  the  final  solution,  final  governing

equation which would then be equals VZ times dell CA dell Z is equal to DAB dell square

CA by dell X square. So this is going to be my governing equation but I would like to draw

your attention to this to the dependence of the species transport equation on the solution of

the momentum transfer equation. So in order to solve the problem, the prerequisite is that you

have an idea of the expression of VZ from Naviar Stokes equation,  from the solution of

Naviar Stokes equation. 

Because you understand in this figure, the VZ, the variation, the velocity in the Z direction is

going to be a strong function of position on the VZ which is in this direction. So this is your

VZ, VZ is going to be 0 due to no slip condition on the wall and since we have a liquid gas

interface at Z, at  X equals 0, so at  X equals 0, the shear stress is going to be 0. So the

conditions that were used to  obtain the,  obtain the solution of VZ which is  from Naviar

Stokes equation, so you write the Naviar Stokes equation and when you write the Naviar

Stokes equation in the Z component and it is a free flow, so it is only true to gravity and the

boundary conditions that we have used at X equal to L, VZ is equal to 0 and at X equals to 0

dell VZ by dell X is 0 which in other words is saying that Tao is going to be equal to 0. 

So this is no slip condition at the liquid solid interface, this is no shear condition at the liquid

gas interface. So no slip and no shear at the liquid solid and at the liquid vapour interface. So

when you do that, this shows the coupling between the mass transfer, the species transport

equation and the momentum transport  equation unless  you solve  the  momentum transfer



equation in order to obtain an expression for velocity you will not be able to solve the species

balance equation. So this appearance of velocity in the governing equation of mass transfer

couples the mass transport process with the momentum transport process. 

So  as  I  mentioned many times  before,  there  is  a  one-way coupling  between momentum

transfer and mass transfer as long as the properties remain constant. So mu is not going to be

a function of position, mu is not going to be function of concentration since the gas A is

sparingly soluble in B, this ensure that mu is a constant. And therefore the solution of Naviar

Stokes equation is decoupled from the species transport equation and it can be solved, the

Naviar Stokes equation can be solved independently to obtain the expression of velocity in

the Z direction. 

Had  it  not  been  the  case,  then  both  the  momentum transport  and  the  species  transport

equations  will  have  to  be  solved  simultaneously  creating  enough  complexities,  creating

complexities which would probably require a solution by numerical techniques only. So we

know what is this VZ going to be, we have an idea that VZ for such a case is going to be

equal to V Max, it is going to be parabolic distribution 1 - X by delta whole square and this V

Max is the maximum velocity which is there in, obviously in at this point. 

So the expression for V Max is provided, I will not going to that once again. So your final

form is going to be V Max which is a constant times 1 - X by delta whole square times dell

CA dell  Z equals DAB dell  square CA by dell  X square.  Okay. So this is the governing

equation,  the  final  governing  equation  after  you  bring  in  the  expression  of  VZ.  So  the

boundary conditions which are required in here is that at Z equal to 0, this was the figure, this

is the wall and you have the film of liquid which is falling, so this is your liquid and this is X,

Y and Z, the same figure that I have drawn over here, this is delta, this is W and this is L

okay. 

So at Z equal to 0, that means at the beginning, at the top the liquid starts as a pure liquid, so

liquid film begins as pure liquid. So no A is present in the liquid when it comes to when it

comes to in contact with the wall. So at Z equal to 0, that means in this plane, the liquid is

pure liquid as it travels, starts to travel downwards, it is going to absorb and so on. And then

at X equal to 0, CA is equal to CA0, so this CA0, CA0 is the interface concentration of A in B

and in many cases it is the solubility of A in B. So what you get here is that at X equal to 0,

that means on this plane at X equal to 0, for any value of Z and of course any value of Y, the



concentration of A remains constant which is equal to the equal to the interface concentration

or the solubility of A in B. 

At the other end which is at X equal to delta, what we have is then a solid wall. At X equal to

delta, we have the solid wall, so no diffusing A can penetrate this solid wall, so therefore the

solid  wall  will  behave as  if  it  is  an impermeable  wall  as  far  as  A is  concerned.  So we

understand the, this is going to be dell C A by dell X to be equal to 0. So these are the 3

boundary conditions which one which one can, which one must use in order to solve for it. In

this form an analytic solution for this is not possible, so we are going for a limiting solution. 

So what is a limiting solution? We will assume that we are going to solve this equation for a

very short contact time. So what, what is the implication of a short contact time between the

liquid film and the gas? So if we have a short contact time, then if this is the liquid film, then

a species A which gets absorbed at the liquid vapour interface, it does not have enough time

to penetrate deep into the liquid. Before it penetrates deep into the liquid, it reaches L, that is

the end of the film end of the contacting process and therefore during this contacting process,

during the time when A is in contact with B, it cannot penetrate much into the, it cannot

penetrate much into the falling film of B. 

So if and we understand that what is a velocity profile that is going to be, so the velocity

profile would probably look like, the velocity profile is definitely a parabolic velocity profile,

so it is something like this. So the velocities are going to be this, a parabolic velocity profile.

So if this is a parabolic velocity profile and if this is the A molecule which will only penetrate

a little bit into the falling film, so what velocity of the falling film does this diffusing A

molecule will sense? If you are the A molecule and you jump into a liquid stream where the

velocity is parabolic in nature, where you meet the stream the velocity has reached its the

plateau, the top of the parabola, what you would expect is that for you, for the diffusing A

molecule it is as if the entire film is moving with V Max. 

So coming back to this picture once again, if the A molecule cannot penetrate far into the

falling film, in that case for all the A molecules which have gone into the liquid B, it would

seem that there is no variation in the velocity of the falling film, it is because of the nature of

the  velocity  profile.  And as  if  the  entire  film is  falling  with  a  constant  V Max and the

variation  of  V with  X to  the  diffusing molecules,  this  part  is  as  good as  absent.  So the

diffusing A molecules will  not sense that a velocity profile exists in such a case,  what it



would see is that as if the whole film, the entire film is coming down with a constant velocity

and that velocity is equal to V Max. 

So if  that  is  the  case,  for  a  short  contact  time when the  penetration  depth  is  small,  the

modified form of the equation would then be that this part would not be present and it is as if

V Max, VZ is going to be equal to V Max. 
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So the modified equation for a short contact time, I can write it here itself is going to be V

Max dell CA dell Z is equal to DAB dell square CA by dell X square. So this dependence of

velocity on X is no longer relevant for the case of short contact time. So I would start with the

my modified equation again, this modified equation is now V Max dell CA dell Z is equal to

DAB dell square CA by dell X square. So at Z equals to 0, CA is 0, this was what we have



used in the previous case and now I can use the same that at Z equal to 0, CA is 0. And at X

equal to 0, CA is CA0, I use the same over here, that is at the interface the concentration is

going to be equal to some interface concentration which is which is could be the solubility of

A in B. 

And the 3rd condition that I have used if the impermeable wall condition, that is at X equal to

delta dell CA by dell X is equal to 0. But what happens in here, in this case is if this is a

falling film,  this  is  the wall,  this  is  the liquid,  this  is  the gas and the velocity  profile  is

something like this and we understand that the A molecules can only diffuse, only up to a

small distance. So if it only goes into the film up to a short distance, then for the diffusing A

molecules, A molecules, delta which is the thickness of the film is as good as situated at an

infinite distance. So the A molecules, since it cannot go far into the film, for the diffusing

molecules this delta is at, is close to X equals infinity. 

So delta is essentially then infinity to the diffusing A molecules. And what is the condition

that we should use for X equal to X equal to delta? This question is, this equation is no longer

valid,  it  is  meaningless  since  no exists  at  that  point.  So you will  we will  use  the  same

condition as we have done for boundary layers and I would simply say that CA is going to be

equal to 0, which is relevant, which is true. Because if this is the thickness of the film and A

molecules are only car very close to this point because it cannot penetrate much, so whatever

happens  over  here,  at  a  point  far  from  the  interface,  this  is  essentially  mathematically

speaking is infinite, at an infinite distance as far as A molecules are concerned. 

And what is the concentration of A in here, nothing, no A exists at that point since A exists

only up to this point. So in order to have some more mathematical handle on this equation, I

would put the condition, I will modify the condition not as the impermeable wall but as X

tends to infinity, the CA is equal to 0. So if you look at this partial differential equation, this is

my,  this  is  my  IC  and  these,  these  2  are  the  boundary  conditions.  So  this  is  the  initial

condition, initial condition and these are the boundary conditions. 

Now if we compare that with the standard solutions which we have obtained for the case of a

plate with liquid on top of it, initially it is 0 but suddenly at T equal to 0 it is set with a

velocity equal to V. And we are trying to find out how would the velocity, velocity profile

exists,  starts  to  go into the deeper  of  the liquid as a function of time.  And any form of

equation with these set of boundary conditions and initial conditions is a prime example of

combination,  method of  combination  of  variables,  this  I  have  done in  the  case  of  while



solving the problem where a plate is suddenly set into motion and I am trying to find out

velocity as a function of distance, let us say Z and as a function of time and then we have

seen these are going to give rise to an error function solution. 

I will not do this since I have already done it in the class. What you can once again check

how it is done in by looking at the text book which is Bird, Stuart and Lightfoot. So the type

of situations which would give you an error function solution are when a plate suddenly set in

motion. The 2nd could be when you have let say, this is a solid object, temperature is initially

uniform, at time T equal to 0, one of the boundary temperature is changed to a new value. So

it  was  TI  to  begin  with  and  suddenly  it  has  been  changed  to  T0.  And  how  would  the

temperature front penetrate in here? 

You will get the same of boundary, same type of governing equation, same type of, same type

of initial condition, same type of boundary conditions and the solution would simply be an

error function. So this error function solution is quite common in many fields of transport

phenomena.  If  you  get  the  equation  in  this  form,  you  can  directly  write,  if  your  initial

condition and boundary conditions are like this, one is at Z equal to 0, one is at X equal to 0

and X equal to infinity, if these are the forms, then the dimensionless concentration can be

written in the form of error functions. 

And you can simply cite any one of these 2 which is solved in detail in Bird, Stuart and

Lightfoot and you can check how you are going to get this which I will not use any more. So

once you, so this is a limiting solution that you get for the case of concentration distribution.

In the next part of the class I would show you how to use this limiting solution to obtain the

total amount of mass transfer from the gas to the film and what are the parameters on which it

would depend on. 


