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So we will continue with what I was doing in the last class, that is the derivation of the

equation of change for multicomponent systems. And we have seen that with the, with by

assuming a volume element fixed in place and identifying the ways by which mass of species

A can enter the control, can enter the volume element, the reaction which may result in the

generation or depletion of A. Together with these 2, the concentration, the mass concentration

of A inside the volume element may change. So we are, what we are doing essentially is

writing the species mass balance equation for a volume element fixed in space. 
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And what we are, we have obtained this expression, the mass balance equation, this is rho A

is the mass concentration of A, the NA X, that the NA Y and NA Z are the components of the

mass flux vector for component A in the X direction, in the Y direction and in the Z direction.

And this R A is simply the rate at which A is produced in the, in the volume element as a

result of reaction. And we stress once again that this NA contains both the diffusive flux as

well as the convective flux which we have to substitute at some point in future. These are

some of the basic relations of which you are aware of. 

That is the mass flux is simply the mass concentration times the velocity and the velocity is

expressed, the mass average velocity, the formula for that is this. And you similarly have a



formula for molar average velocity where the rhos are going to be substituted by C, the molar

concentration. So if I express this equation in vector form, what I would get is dell rho by dell

T + Dell dot NA, the mass flux vector is simply going to be equal to the reaction rate. And if I

write, so this is for component A and I can write the same expression for component B as

well where only this rho A is going to be replaced by rho B and NA is going to be replaced by

NB and RA by RB. 

Once again I mention that these reactions are expressed, the reaction rates are expressed in

terms of mass and not for this moment, not in terms of moles. So these are the reaction rates

in masses. So if you if you if you add these 2 equations together, what you are going to get is

the mass concentration of A and the mass concentration of B, so dell dell T of rho A + rho B

is simply going to be the mass concentration of the solution which consists of 2 components

A and B. So rho A I have used this formula, I have used the relation rho A + rho B is equal to

rho. So the 1st term becomes this and secondly the sum of mass flux, that is NA and NB of 2

species NA and NB, if you look at the expression of NA and what is the definition of V, then

you can clearly see that NA + NB is simply equal to rho V. 

So rho A VA + rho B VB is simply equal to rho, the denominator is rho, so rho times V, so the

equation that we would get is dell rho dell T + delta dot rho V to be equal to 0. And you can

you can identify this equation,  you can identify this  equation to be that of the continuity

which we have written for a pure fluid. So the equation of continuity which we did right for a

pure fluid and what we are doing here is we will have normal to component system consisting

of components A and B, so when we write the species balance equation for component 1 and

that for component 2 and add them together, what I get is the conservation of mass for the

entire solution consisting of 2 components A and B. 

So it should and it did revert to the equation of continuity which we are familiar with. So

what you get is then dell rho dell T + dell of, dell dot rho V is equal to 0 and if you are

dealing with a fluid which is, in which the density is constant, it is not varying, then simply

this term would be, can be equated to 0 and what you would get is dell dot V to be equal to 0.

So this is another form of equation of continuity that we have used extensively in our in our

discussion with fluid mechanics. 
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Here some of the relations that once again write for reference, so this is the mass average

velocity, so rho I V I, I equals 1 to N, equals 1 to N, rho I V I by summation rho I. The molar

velocity, molar average velocity C, C is the molar concentration, C I VI times CI, the mass

concentration, total mass concentration is rho A + rho B, the total molar concentration is CA

+ CB when we are talking about the binary system. And CA, the concentration, the molar

concentration of A is simply rho A by MA, MA being the molecular weight of component A

and CB, the molar concentration of B is simply rho B by MB. 

Again continue with the basic definitions, NV is equal to the mass flux of component A is

equal to rho H times VA, the molar flux of component A is CA times VA and therefore NA +

NB NA + NB would give me the mass flux of the entire solution, so which would be rho A

VA + rho B VB and if you look at this expression, rho A VA + rho B VB would simply be

equal to V times rho, so rho times V, so this follows directly from the definition of V. And

similar,  in  similar  way  if  you  find  out  that  NA +  NB,  it  is  going  to  be  C,  the  total

concentration, total concentration in molar terms multiplied by the molar average velocity. 
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So this, these are standard forms which we will use subsequently but I thought it is important

that we have this presented once again. So we, if we write the expression which we have

obtained before which is dell rho A dell T + delta dot NA is equal to RA, all are expressed in

terms of, all are expressed in terms of mass. And if I divide this equation with the molecular

weight of A, that is if I divide both sides of the equation by MA which is the molecular

weight of A, then this equation in mass terms can be converted to molar units. So in terms of

molar units, this equation would simply be equal to dell CA by dell T + Dell dot NA is equal

to RA, note that this RA and everything acts, in this expression is in terms of molar units. 

I can write this for component B as well, so dell dot NB is equal to RB which is again in

terms of moles, so when you sum them together, dell CA by dell T, sorry dell C by dell T +

dell of C V star is equal to RA + RB. So this is the equation of continuity in terms, in molar

terms. Now the, compare the difference between the 2 equations, when we express this in

mass terms, this was equal to 0. This is the expression which we have obtained. So if it is a 2

components system, so for mass of A produced must be equal to the mass of B which is

consumed. So in mass terms of the amount produced by reaction and the amount consumed

by reaction must be equal. 

So mass will always be conserved, conserved but we cannot say that for in molar terms. So

not in all cases one mole of A is going to give rise to one mole of B which will depend on the

stoichiometry of the equation. So therefore capital RA and capital RB, the sum of these 2 may

or may not be equal, may not be equal and opposite. So their sum of RA and RB in terms of

moles may not be 0. So in order to maintain the general nature of the equation, of the relation,



underscoring the special nature of capital RA + capital RB, that being it may or may not be 0

and like the case of mass expressed, rates expressed in terms of mass where they always will

be 0 and keeping this RA + RB in the solution as well. 

So if we have a system of constant molar density, so this is, this may not be equal to 0,

constant molar density, that means C is going to be a constant, so therefore you are going to

get is dell dot V star is equal to1 by RA + RB. Since C is a constant, this is going to be 0, this

can be taken outside and dell dot V star is this, compare that with what we have obtained

when the mass concentration is 0. 

So this is the same thing, these 2 equations are identical, one is expressed in terms of moles,

molar average velocity, molar rate of reaction, here the expressions are in terms of mass, so

they are similar in concept but different in form. Next comes the, what is going to happen to

NA.  We  have  said  that  NA contains  both  a  convective  contribution  and  a  conductive

contribution, same applies for capital NA as well. 

(Refer Slide Time: 11:39)

So if we if we write NA in terms of mass fraction WA, then the Fick’s law would be WA

times NA + NB is equal to - rho DAB times dell of omega A. So this is again, this is mass

fraction, so we are writing this equation in Fick’s law, the generalised Fick’s law in terms of

mass fraction, this is mass flux, mass fraction, mass flux, constant density, DAB and mass

fraction again. And if you write in terms of mole fraction, in terms, if I write in terms of mole

fraction, we get the familiar equation, so mole fraction we denote by X A and the family is

expression is X A times N A + NB equals - C DAB dell of XA. 



So again these 2 equations are identical, we have so far used this form of the Fick’s law

where the molar, where the diffusive flux, where we have the diffusive flux and this is the

bulk flow term. So it is the same as this except the, except the difference between mass and

moles. So the 2 equations which we have in here, this equation in terms of mass and this

equation in terms of moles and what we are going to do is we are going to substitute small na

and capital NA in these equations, small na over here and NA over here, these 2 equations in

that and we would obtain 2 identical equations, completely equality equations, not identical,

equivalent equations, one is in terms of mass, this is in terms of mass and mass fraction, in

terms of mass and mass fraction and in terms of moles. 

So fundamentally there is no difference between these 2, one as I said in terms of mass, the

other is in terms of moles. This is mass average velocity, this is molar average velocity. This

is rate of generation of A in mass per unit time, this is rate of generation of A in moles per

unit  time.  So  these  are  identical  equations  but  we  should  also  point  out  other  certain

limitations, certain things that we have assumed which must be mentioned. We said that the

diffusion takes place only when there is a concentration gradient present in the system but

there are other ways by which diffusion can take place. 

If we have temperatures different between 2 points in an otherwise concentrate, otherwise , in

a  solution  where  the  concentrations  are  the  same  but  the  temperatures  at  2  points  are

different, that could also create a diffusion. If you have a system, if you have a, if you have

other  parameters are  different  in a  perfectly,  in  a  solution which is,  which has the same

concentration everywhere, then also you can have diffusion, because diffusion, if we use the

term strictly is not dependent on concentration gradient alone. Diffusion is going to result if

there is a chemical potential difference between 2 points in a solution. 

The true definition, the true cause of diffusion is not only concentration difference, though

that is the most common cause of diffusion, mass diffusion, actually it is the concentration

potential, the chemical potential difference which causes a species to move from one point to

the other. And chemical potential is a complex function not only of concentration but also of

pressure and temperature. So if concentration being equal at every point in a solution, if the

pressure  and  temperature  vary  in  between  2  points  in  a  solution,  even  if,  even  if  the

concentrations are same, we can still have diffusion. But in our analysis, we have, what we

have presented we did not consider the diffusion induced by temperature or by pressure. 



So  the  expression  that  we  have  obtained  is  only  for  concentration  difference  induced

diffusion only. So this restriction or this limitation of the equation should have to be kept in

mind, though it is going to be the diffusion, the concentration difference is the most common

cause of diffusion, of movement of species from one point to another. 
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So these are the 2, 2 equations and I am going to write these expressions once again. These

are called the special cases, special cases that we encounter. The 1st equation which is dell rho

A, the 1st equation that we have written + dell dot rho AV is equal to dell dot rho DAB times

the dell of the mass fraction + RA. So if I just expand this term, what I expand this term and

assume that DAB is a constant, so for the case of constant total mass concentration of the

solution and constant DAB, this expression would be simply dell rho A by dell T + rho A

times dell V + V times rho A and this since DAB and rho, both are constants, so it can be

taken outside. 

So DAB is  taken outside and rho is  taken inside,  this  is  mass fraction,  multiplied,  mass

fraction multiplied by the total density, so this would simply be equals dell square times rho A

+ R A will remain unchanged. So I expand this into these 2 terms, to DAB outside and took

rho inside. So the mass fraction would simply be equal to the mass density, mass fraction

multiplied by the total density would simply be equal to the mass density of component A.

And we know that for a constant rho system, this is equal to, this is equal to 0 from our

equation of continuity. So what we have then is dell dell rho A dell T + B times dell rho A is

equal to DAB times dell square rho A + RA. 



And when you divide this, divide by the molecular weight of component A, if I divide this

term, this equation by the molecular weight of component A, what I am going to get is dell

CA dell T + V times , V times dell CA is equal to DAB dell square CA + RA. So these are in

mass terms and this is in molar terms. So these are identical equations, conceptually they are

the same but one is in mass concentration, this is in molar concentration, molar concentration,

molar  concentration,  reaction  rate  expressed  in  terms  of  moles  rather  than  molar

concentration expressed in terms of masses. 

So if you look at this expression a bit more carefully and if you see what is this, this is

nothing but the, this is nothing but the substantial derivative of concentration of A. So what I

have, if I would like to compare this with the equation which we have obtained and I hope

you remember this as dT by d, d temperature by d time equals K dell square T + some sort of

a generation term, if you divide both sides by rho CP, what you get is dT by d time is equal to

K by rho CP and K by rho CP is nothing but Alpha times dell square T + S prime where S

prime is simply S by rho CP. 

So when you compare these 2 terms, these 2 equations or rather these 2 equations, what you

have here is the substantial derivative of concentration, what you have here is the substantial

derivative of temperature, what is on this side is the transfer of mass A, species A as a result

of  diffusion.  This  is  transfer  of  energy  through  conduction  because  of  difference  in

temperature. So this and this are identical, this is a generation term through reaction and this

is energy generation, it could be of various means a nuclear source, a current source which is

resulting in heat and so on. So the 2 equations fundamentally, conceptually are then identical.

And this  is  the  beginning  of  simultaneous  identical  treatment  of  mass  transfer  and heat

transfer process. 

So the mass transfer and heat transfer process, the form of the governing equation, the form,

the  forms  are  absolutely  the  same,  conceptually  one  is  the  substantial  derivative  of

concentration, this is the substantial derivative of temperature, this is the diffusive transport

of mass, this is the diffusive transport of energy, this is the source term you to reaction, this is

a source term due to by various means that is nuclear, ohmic and so on. So if the governing

equations, the same form of governing equations underscore the fact that it is possible to treat

mass transfer and heat transfer together. 

So in many cases, in many situations where a simultaneous heat and mass transfer is taking

place, the form of the equations governing the heat and mass transfer will be the same. And



we will see special cases where not only the forms are the same but the boundary conditions

expressed in dimensionless forms will also be the same. So if those, if that situation happens,

that is the governing equations are the same and the boundary conditions in dimensionless

forms are the same, then a significant simplification of the entire process can be obtained,

which we will study in when we are going to, when we are going to explore the analogy

between heat, mass and momentum transfer. 

But it would be sufficient here to mention or to underscore, underline the same form of the

equation, same form of the equation of heat transfer and equation of mass transfer in these

cases. So these 2 equations, these 2 equations are to be kept in mind, the similarities between

them when we are going to solve for the problem. So this is a starting point for simultaneous

heat and mass transfer. So whenever we deal with simultaneous heat and mass transfer, we

have to think in terms of the normal nature of the equations. 
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So coming back to the equation for mass transfer, what we have then is dell CA dell T + V

times dell CA is equal to DAB del square CA + a reaction term when everything in terms of

moles. So this expression, this equation has, this equation can therefore be found, the form of

the equation in Cartesian coordinates, in cylindrical coordinates and in spherical coordinate.

So we choose equation and its form and cancel the terms which are irrelevant, what you get is

your governing equation. So in the next part, in the next part of the, next class, what I am

going to do is I will show you a problem which is difficult to visualize when you try to do a

shell momentum shell mass balance. 

But the problem, and getting to the governing equation is a lengthy exercise. But if you do

that with this equation, the generalised species transport equation, how easy it would be to get

to the final form of the, final form of the governing equation. So in the remaining 2 or 3



minutes that I have for this class, I will simply introduce the problem and show you what

kind of a shell one has to assume in order to obtain the governing equation. And then in the

next class I will show you how to use the species balance equation to solve for the problem. 

So the one that we are, I am going to do right now is a solid wall and a liquid film is falling

on the solid wall, okay. And there is a species, so this is liquid B and liquid A gets dissolved,

so at this point, from this point onwards, the falling film of B sees the component A. So if we

talk about this being the Z direction, this being the X direction and this being the Y direction,

then at Z equals to 0, so this is Z equal to 0 and we have Z equals L. And we will assume that

the film is wide enough, such that none of the parameters are going to be function of Y. So as

the film falls, it sees component A only at Z equal to 0 up to Z equal to L. 

And this component B a gets dissolved in the liquid B and it is, let us assume I do not make

any  comment  on  whether  A is  sparingly  soluble  or  highly  soluble.  The  moment  an  A

molecules  gets  dissolved,  it  starts  its  downward  journey.  But  there  is  a  difference  in

concentration in this direction, so A must diffuse in this direction and A is going to go in this

direction by convection. And we are going to assume that I have only one component of

velocity VZ which is not equal to 0 but both V X and VY are equal to 0. So it is the one-

dimensional motion of the liquid that after A gets dissolved carries it in this direction. 

And this distance, the thickness of the film is delta. So we have no A present in it, some A

present up to this and the penetration of A inside the liquid film will keep on increasing as we

move in this direction. So some sort of a profile of A is going to be felt, it will be developed

in here. I would like to find out how much A is going to get dissolved in liquid B when it falls

with, so A has a velocity VZ, I would like to find out the variation of CA and I understand the

concentration of A going to be function of X, it is also going to be function of Y. So it is

going to be function of X and it is going to be function of Y. 

So I would like to find out the profile A in the liquid film. So A, profile of A the liquid film.

And  we  understand  there  is  a  diffusion  in  this  process,  diffusion  in  this  process  and

convection in this process. So if I, this is my diffusion in the X direction, I have diffusion in

the Y direction and I have convection, sorry, Z direction, in the Z direction, CA I am sorry CA

has to be function of X and Z. So these 3 are taking place, the question then comes, how am I

going to take a shell, because we generally take a shell, is it going to be of size delta X since

CA is a function of X. What is it going to be of shell delta Z, since CA is a function of Z, so

depend to be my shell, of delta X thickness or of delta Z thickness? 



And you can clearly see, since CA is both the function of X and Z, the shell that you are

going to design is going to be a function both of X and of Z. So therefore this, the shell that

you are going to do is going to be a shell like this which is delta Z and a shell like this which

is going to be delta X. So this is the shell with across which you going to be all the balance.

So your shell is going to be of area dell X dell Z. And it could be of any Y, it does not matter,

all the, all the parameters are going to be function of dell X and delta Z, dell Y is not relevant.

Now you see the problem, you are imagining, so far you are dealing with a shell with one

dimension, now we have a shell in which the smaller dimension could be 2. 

So instead of a thin page type shell like this in dell X or in dell Z, now you have a shell which

has some dell X and some dell Z, how do you how do you do that? You can still do it, you

can still do it but you have to maintain and visualize through this face I am having conduction

and convection both, through this face, since there is no velocity, this is my film, through this

face, since I do not have any velocity, any bulk velocity, I am only having conduction. So the

top faces of the imagined shell will be exposed both to conduction as well as to convection,

the side face of the shell is only exposed to diffusion. 

And in this way, in the Y direction, it is not going to be, it is not relevant since nothing, the

concentration  is  not  a  function  of  Y.  So  for  a  two-dimensional  system your  entire  shell

momentum balance starts to break apart. Now consider this to be a situation in which the

transient  effects  are  added  to  it,  how the  complexity  increases  when  you start  having  a

velocity or a concentration which is having a which is dependent both on X and Y and as well

as T. If you look at your textbook Bird, Stuart, Lighfoot, this specific problem has been done

using a shell balance, Shell species balance. 

So it is still he would be able to visualize it. But since now you know the species balance

equation, what am I going to do in the next class is solve the same problem but start with the

species balance equation and cancel the terms and you would see what has required one-page

of  the  text  and  some  visualising,  imagining  of  the  different  transport  processes  on  an

imaginary shell, how easily it can be done when you pick the right component of the equation

and cancelling terms which are not relevant in this specific case. So this is the one which we

are going to see in the next class. 


