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We were discussing about diffusion, probably with convection in a system in which there is a

homogeneous chemical reaction taking place. So the problem which we have attempted in the

last class is about a gas which gets dissolved in a liquid and then it starts its decision towards

the other end of it. So it could be a solid container in which a liquid B is kept and A gets

slowly dissolved at the top and A molecules as it starts moving towards the bottom of the

container, it reacts with B, therefore destroying A in the process and we wanted to find out

what is the distribution of concentration of A in the solution, in the solution of B which is

kept. 

So we wanted to know what is the concentration distribution of A in the liquid. And of course

the maximum concentration would be at the top where A gets dissolved and as we move

progressively downwards, the concentration of A will slowly get will slowly get diminished.

So since it is a homogeneous reaction, the term would appear in the governing equation itself

as a source or sink term. So if we if we take a slab of the liquid and the amount of A in moles

or mass, let us say in moles, amount of moles of A coming in at the at the top of the slab and

the amount of A that goes out, so in - out and since it is a reaction in which A gets consumed,

so - of, - of the depletion should be equal to 0 at steady-state. 

So in - out + or - generation or depletion would be equal to 0. And we assumed the order of

the reaction, so the amount of A that comes in, the one that goes out, the amount of A that

comes in was NA which is a molar flux multiplied by S, where S is the cross-sectional area of

the assumed shell. So this is what we have done in that class. 
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So the amount of A which comes in which is N AZ which is evaluated at some location Z

times  S where  S is  the  cross-sectional  area  -  the  flux  evaluated  at  the  other  end of  the

assumed slab multiplied by the same cross-sectional area + or - generation or depletion and

the depletion term was simply K1, note the triple prime which denotes that it is a reaction

which is homogeneous in nature. So K1 triple prime represents a homogeneous reaction and

since it  is first-order it  is going to be K1 triple Prime CA times S where S is the cross-

sectional area and delta Z where the thickness of the assumed shell is delta Z. 
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So dividing both sides by delta Z, we got this as the differential equation, governing equation.

And after putting in the expression of N AZ, using Fick’s law and assuming that it is a one-



dimensional diffusion only case, where A diffuses in the Z direction, so this was the form of

the equation and the 2 boundary conditions that we have used were at Z equal to 0, that

means that the liquid air interface, the concentration of A is maintained at CA 0, where CA0

is the, could be the interface solubility, the solubility of A in the liquid. And at the other end

what we have done is that at Z equal is L, that means at the other end of this system, since

this layer is impervious to the A molecules, so the flux of A at that point would be equal to 0

and therefore dCA dZ would be 0. 

So it acts like an adiabatic wall in the case of heat transfer. So the concentration this tradition

was obtained in cos hyperbolic form where the constant BA is nothing but this. And the

average concentration is obtained by averaging over the entire length of the liquid pool, so

between 0 to L and dividing it, divided by, dividing it by L, so this when plugged in here

would result in the average concentration of A inside the liquid pool of B, where this B 1 is

simply a constant. 
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What we are going to do in this class is we are going to look at what would be the form of

the, what would be the governing equation and the relevant boundary conditions if we have

disillusioned with a heterogeneous reaction. So we can either have a slow reaction have a fast

connection.  So  1st initially  what  we  are  going  to  do,  we  are  going  to  do  with  a  fast

heterogeneous  reaction,  therefore  this  will  be  our  problem 1  and  the  slow heterogenous

direction would be our problem 2. 

So the 1st thing is what we are going to do, we have a very fast reaction in which the product,

the moment it reaches the heterogeneous surface, heterogenous reaction and heterogeneous,

perfect example of heterogenous reaction is a catalyst,  catalytic reaction, where you have

catalyst particles present in it, so a species will travel through the film, the thin film which

surrounds, thin film of of the of a gas which surrounds this catalyst pellet, reaches the surface

and immediately upon reaching the  surface the  reaction,  the  instantaneous reaction takes

place and whole of A gets consumed, gets converted to some products. 

But as it diffuses through the film, through the thin film, nothing happens to A. So it is a

diffusion only that  is  taking place in the thin film without  it  is  getting converted to  any

product. The conversion comes only at specific location in the system, that means the catalyst

pellet. Since there is no distributed generation or distributed d depletion of A as it travels

through this thin-film, the reaction term will not does not appear in the governing equation.

The governing equation will be considering only a diffusion, it is a diffusion only case when

we have a thin-film. 



The surface reaction will come as a boundary condition while solving the governing, while

solving the governing equation. So we will see that and the example that we are going to do

as that of a catalytic reactor. We all know that catalytic reactors are added to cause, in order to

convert the toxic gases, like say, so the gases and to convert them from the lower oxides to

higher oxides of carbon, nitrogen and so on. 

So carbon monoxide coming in to this catalytic reactor, so this is a catalytic reactor, example

could be in a car where we have a gas A which comes in and there are catalyst particles

distributed everywhere where A gets converted to let say A2 and then what you are going to

get out of this is gases A and A2. So the reaction that takes place as 2 molecules of A will

react on the catalyst surface to produce one molecule of A2. So this is the reacted, this is the

product. Now these catalytic particles at times fundamentally it is easier to handle if you

assume that the catalyst surface looks something like this. So this is the catalyst surface on

which the reaction takes place, so this is the catalytic surface which is surrounded by a thin

stagnant film. 

So this  is  at  Z equals delta  and this  is  at  Z equals 0.  So what you have here is  then A

molecules are moving over this stagnant film that surrounds the catalyst surface, so A starts

refusing in this direction, the reaction from A to A2 takes place on the surface and A2 starts

diffusing back towards the bulk stream of the gas mixture which is going. So here you have A

+ A2. So this is the, this is the edge of a hypothetical gas film which exists around each

particle or in other words the conceptual modelling tells us that each particle is surrounded by

a stagnant gas film through which A diffuses to reach the catalyst surface, it gets converted

into the product A2 and then A2 starts moving back, its journey back towards the bulk flow

where both A and A2 gets carried away towards the exit of the catalyst reactor. 

So this is a simplified modelling of the catalytic reactor that is taking place, that we are

attempting here and we are trying to find out what would be the concentration profile of the

reactant A in the stagnant gas film. And once we have the concentration profile then we

would be able to convert that, we would be able to deduce from that what is the conversion

rate of A to A2 and that would help us in designing such a catalytic reactor. So that is the

practical example use of such a modelling exercise and we would like to do that over here. 

So we also know that for each molecule for one mole of A, so one mole of A2, 2 moles of A

moves in the + Z direction. So for one mole of A2 moving in the - Z direction, we have 2

moles of A which is moving in the + Z direction. So 2 moles of A coming and getting over



here to form A2, so 2 moles of A has to move in the + Z direction for one mole of A2 to move

in the - Z direction. And at steady-state the rate at which A comes in, so 2 moles of A comes

in and the rate at which A2 moves out must be equal. 

So in other words what we can say is N A2 Z, that is the molar flux of A2 in the Z direction

must be equal to - half of the molar flux of A in the Z direction. So this is the direct result of

this stoichiometry of the reaction in which 2 moles of A reacts to form one mole A2. So

therefore in flux term with the introduction of appropriate sign I can write that N A2Z is

equal to - half of N AZ. And starting with the formula that NA is equal to - C DAA2, this is

the diffusion coefficient of A in A2 times dXA dZ + XA times N AZ + N A2Z. So this is the

Fick’s law and here we know what is the relation between N AZ and N A2Z from here. 

So substituting the expression of N A2Z from this to over here, what we can get is N AZ

equals - C, the diffusion coefficient of A in A2 by 1 - half of XA multiplied by dXA dZ. So

this is now the correct form of the flux of A in the Z direction. And the stoichiometry of the

reaction gives me the relation between NA and N A2, so this is my flux reaction. As before I

can think of a thin shell over here and NA is coming at N AZ at Z and the one that goes out

would be N AZ evaluated at  Z + delta  Z.  Since no reaction is  taking place in  here,  the

conversion, the equation would be simply in - out at steady-state would be equal to 0. 

So what I would get out of this is N AZ multiplied by the cross-sectional area of this assumed

slice evaluated at Z - N AZ at this point evaluated at Z + delta Z times S is going to be equal

to 0. So in - out is equal to 0 since no reaction is taking place in here. Reaction is only taking

place on the catalyst. So you can divide both sides by delta Z and the governing equation out

of this would simply be, will simply be equal to d dZ of N AZ is equal to 0. 
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So this is the governing equation for the modelling exercise which we were doing. And when

you plug-in the expression for N AZ it would simply be, when we plug in this expression for

N AZ into this, what we would get is that a d dX of 1 by 1 - half of XA times dXA dZ will be

equal to 0. Had this been a case of diffusion only situation, that is, A is moving towards the Z,

towards the catalyst surface by diffusion, only by diffusion, in that case the 2 nd terms, that

means this term on the right-hand side, this term on the right-hand side of the, of the species

balance equation, this entire term would be 0 and NA would be equal to the diffusive flux. 

So if NA is reaching the catalyst  surface by diffusion only process,  then your governing

equation, this entire term 1 by 1 - half XA would not be present. So you would simply get d2

XA by dZ square equal to 0 and you would get a linear profile, linear profile of A in such a

system. So for a diffusion only case, this equation would get transformed to d2 XA by dZ

square to be equal to 0 and this can be solved. So once you solve this equation the solution of

this equation is going to be one 2 ln 1 - half of XA is equal to C1 Z + C2. And the boundary

conditions 1 and boundary conditions 2, the one is going to be at Z equal to 0, that means this

is my catalyst surface, this is Z equal to 0 and this is Z equal delta and this direction we have

the Z. 

So at Z equal to 0, XA, the mole fraction of A is some known value XA to be equal to XA0.

So one condition that we have for the film is that the concentration at the outer edge of the

film, the bulk flow is known to me. So the concentration at X equal, at Z equal to 0 is some

known value XA 0. But it is interesting to see what what would be the boundary condition at

the other end, that is on the catalyst surface. As I have mentioned before, on the catalyst



surface A instantaneously gets converted to 2 A2. So that means on the catalyst surface, there

cannot be any free A present. 

Or in other words, the concentration of A on the catalyst surface must be equal to 0, which is

true only if the reaction rate is very high or it is, there is an instantaneous reaction. So A

immediately gets  converted to  A2.  So for  such conditions  the  concentration  of  A on the

catalyst surface would be equal to 0. And therefore the 2nd boundary condition in this case

would be at Z equal to delta XA equal to 0. So this is true, since we have an instantaneous

reaction. It is an instantaneous or very fast direction, so XA is going to be equal to 0. 

So when you plug these 2 boundary conditions and evaluate C1 and C2, what you get as a

final form is 1 - half of XA is equal to 1 - half of XA 0 to the power one - Z by delta. So this

is going to be the distribution of mole fraction of A in the thin-film as a function of Z, as a

function of the thickness of the film which surrounds its each particle and the concentration

of A in the free stream condition. 
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This is fine but we are probably more interested to know what is the molar flux, what is the

molar flux of A through the film. So the molar flux of A through the film and we understand

that N AZ is  constant.  So this  is  essentially  gives you N AZ is  constant,  since N AZ is

constant, you can evaluate N AZ at Z equal to 0 or Z equals delta it does not matter for any

point in between. So your N AZ would be equals, from the previous equation D diffusion

coefficient of A in 2, 1 - half of XA from our previous relation times d XA dZ. 



And this dXA dZ evaluated from this would simply be equals twice the concentration, the

total consecration of both A and A2 present in the film, the diffusion coefficient times delta

logarithmic of 1 by 1 - half of XA. So this is the rate at which A is approaching, A is moving

towards, in the in this film towards the surface. Now the reaction A giving A2 is simply a

dimerisation reaction. 1, 2 moles of A, twice A giving A2, that was the reaction which we

have used. So it is essentially 2 molecules of A, 2 moles of A are forming a dimer A2. So

since at steady-state whatever be the rate at which the molar flow rate of A coming towards

the surface, that gets converted into A2. 

So N AZ can also be written as, this is the local rate of dimerisation. So the flow of A, the

molar flux of A is essentially the rate at which A is going to form the product which is a

dimerisation reaction.  So this  is  going to  be  the local  rate  of  dimerisation  of  A into  the

product. So this is a concrete example of what happens when we have the reaction that is

taking place on the catalyst surface, on a heterogeneous reaction. A slight variation to this

problem can be given if instead of an incident a reaction, if it is a slow reaction. That is the

rate of conversion of A to A2, the rate constant is not infinite, it is finite. 

So therefore the rate at which A gets converted to A2, it has a finite, it has a finite rate. So it is

dictated by a rate expression by rate constant which is not infinite. So the next step, the next

extension of this problem can be if we need to find out what is going to be the profile and

what is going to be the rate of dimerisation if instead of a very fast action, we are dealing

with a slow reaction, everything else will remain same. Since no reaction is taking place in

the bulk, therefore the governing equation will be, will remain unchanged. So therefore d dZ

of N AZ will still be 0, that is your governing equation. 

The expression for N AZ in terms of Fick’s law, that will also remain the same since the

stoichiometry is same, so for each 2 moles of A coming towards the catalyst surface, one

mole of A2 has to travel in the reverse direction. Okay. So that relation will also remain

unchanged. So my governing equation will remain unchanged, the expression by which N AZ

can be replaced in the governing equation will also be the same. The only difference that we

would see is what is going to be the boundary condition on the catalyst surface. Previously

we took the boundary condition of the catalyst surface to be that the concentration of A on the

catalyst surface is 0. 

No A can exist on the surface. But since it has a finite rate of reaction right now, so we have

to take that into account in our description of the 2nd boundary condition of the problem. So



the next problem extension of this problem that we are going to do is what is going to happen

if it is a slow reaction. 
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So  the  reaction,  the  problem  that  we  are  going  to  do  is  the  diffusion  with  a  slow

heterogeneous reaction. So let us say that the rate at which A disappears on the surface is

given by this rate expression. Remember the note the double prime that I have used for the

rate constant. So double Prime is for heterogeneous reactions and as I mentioned before,

triple prime for homogeneous reactions. So this is a double prime which is conventionally

used for this case. So the governing equation will remain the same as I have said before, d dZ

of N AZ to be equal to 0. 

And the boundary condition 1 will remain unchanged, that is at Z equal to 0, XA is equal to

some known consecration, some known mole fraction XA0. The boundary condition able to

which is that Z equals delta, previously the boundary condition that we have used is XA to be

equal to 0, then what I am going to use here is XA is N AZ divided by C K1 double prime. At

steady-state the flux of A coming towards the catalyst surface, this is the catalyst surface, the

A which is coming, the N AZ, the flux of A which is coming towards the catalyst surface and

it is getting consumed on the catalyst surface. 

So the rate at which A comes in towards the catalyst surface must be equal to the rate at

which it gets converted into products. So if this does not happen, so the amount of A that

comes in from the bulk towards the catalyst surface and the rate at which it gets converted to

products, if these 2 rates are not equal, then what is going to happen is that the concentration



of A on the catalyst surface will keep on changing with time. So if we have more of A coming

towards the surface than getting converted to A2, then with time the concentration of A on the

catalyst surface will increase. 

And if less of A is coming, then the rate at which it gets converted, then the amount of A,

concentration of A molecules of the cattle surface will  decrease with time. Both of them

violate our steady-state assumption. That is the concentration of A or A2 is a function only of

Z but it is not a function of time. So a steady-state can be attained only when the flow, the

molar flow of A towards that catalyst surface is equal to the rate at which it gets converted

into the products. So therefore using equating the flux to the reaction rate, the flux of A in the

Z direction to  the reaction rate,  I  can,  we can write  the condition at  Z equals  delta,  the

equality of the rate of movement of A to that of the reaction rate, this is the condition that one

can write. 
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And when you solve this and the boundary, the governing equation will remain the same, so

when you plug that, plug the expression of N AZ exactly like the previous one into this and

integrate and use the conditions, boundary conditions, the final form that you are going to get

is, so this is going to be the expression, this is going to be the expression for expression for

the concentration distribution of A in the Z direction. Just compare this with the expression

which we have obtained when it was an instantaneous reaction. So this is for a slow reaction

and this is for an instantaneous reaction. 

So compare these to and you would see that this one, these terms appears additionally, this

additional term appears in the expression of concentration distribution of the mole fraction,

concentration distribution or the variation of mole fraction as a function of Z. So comparing

these 2 you would see that this is the additional term that comes because of the nature of the

reaction being slow as opposed to instantaneous as in the previous case. So you can evaluate

N AZ as we have done before and this N AZ, the expression for N AZ would simply be equal

to twice C, the diffusion coefficient of A A2 divided by delta ln of 1 - half N AZ by C K1

double Prime divided by 1 - half XA 0. 
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So here you can again see the difference between these 2. So this term remains the same, this

term remains the same but this one, this one over here, this one over here, the derivatives are

same but the numerator is different. So this is the, this is the rate of conversion of A, rate of

conversion of A in terms of the other parameters. Since this is logarithmic, if this term is

small, the logarithmic, logarithm of the numerator can be expressed in the Taylor series and

considering only the 1st term, slight simplification of this equation can be maintained, can be

obtained which would give you N AZ to be equals twice C D A A2 diffusion coefficient by

delta 1 + diffusion coefficient divided by K1 double Prime delta ln 1 by 1 - half XA 0. 

This is the form which you would obtain when you take it Taylor series expansion of this.

Okay. So again compare the results which we have opted with the result that we we opted



before, that is the local rate of dimerisation for a fast reaction is simply twice C D A A2 by

delta. So we have this over here but this is the additional term that we are getting since our

reaction  rate  is  finite.  Had  this  been  an  infinite  reaction  rate,  signifying  that  it  is  an

instantaneous reaction, then this whole term would be 0 and this expression would revert to

whatever expression we have obtained for the case of very fast reaction. 

So it is always better to see that in the limiting case where the value of K1 is very large

whether or not this expression becomes the same identical with the expression which we have

derived based on an infinite are very large reaction rate, instantaneous reaction. So this is, this

is consistent with our understanding. And the dimensionless group, dimensionless group D A

A2  by  K1  double  Prime  delta  which  is  this,  this  has  to  be  dimensionless  and  this

dimensionless describes the effect of surface reaction rate on the overall diffusion reaction

process. 

The previous result which we have obtained for the case of 1st reaction was a d diffusion

which is taking place. But here the process is governed not only by diffusion, also by the

reaction, the rate of reaction which is taking place on the catalyst surface. And the term, the

group, the dimensionless group which is responsible which is an indicator of the effect of

reaction in this diffusion process is essentially what we have in the denominator, the diffusion

coefficient of A in A2 divided by K1 double Prime delta. 

Because if we did not have this, if this is equated to 0 then you the expression becomes

identical to this one, this expression becomes, sorry this expression becomes identical to this

one. So therefore the dimensionless form D A A2 by K1 double Prime delta, it denotes the

effect of surface reaction on the overall diffusion reaction process. So what we have done

here  is  and whatever  I  have  taught  in  this  class,  it  is  also available  in  Bird,  Stuart  and

Lightfoot. As I told you before in this part of the mass transfer, treatment of mass transfer I

am following the textbook Bird, Stuart and Lightfoot. 

Whenever I am going to do something different from another book, I will let you know. But

all the examples of mass transfer that we have analysed so far are given in your textbook

transport phenomena by Bird, Stuart and Lightfoot. So what we saw is that using a shell mass

balance and with the appropriate boundary conditions, incorporation of reaction rates as a

source  come  in  the  governing  equation  for  a  homogeneous  reaction  or  as  a  boundary

condition  in  heterogeneous  reaction  we  could  solve,  we  could  obtain  the  profile,  the

concentration  profile  or  the  mole  fraction  profile  of  any  component  in  as  a  function  of



position. And the heterogeneous reaction that we have analysed, we took 2 extreme cases, 1

when the reaction is instantaneous and 2nd when the reaction has a finite rate, that means it is

a slow reaction. 

So this probably has given us enough information for us to have a too have a tutorial in the

next class in which we will solve some of the problems of mass transfer of similar nature but

with slightly more complexity. 


