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Mass Transfer.

So far we have discussed momentum transfer and heat transfer and we have also worked

what would be the type of transport, how can we press mathematically the transport inside a

boundary layer, a hydrodynamic boundary layer and inside it a thermal boundary layer. For

the case of hydrodynamic boundary layer we have seen how to obtain an analytical solution

by  converting  a  PDE  which  was  originated  out  of  the  simplification  of  Naviar  Stokes

equation for flow inside a boundary layer on a flat plate. 

So we used the method of combination of variables to obtain not only the velocity VX and

VY inside the boundary layer, but also the gradient of velocity or at Y equals 0, that means

that  liquid  solid  interface,  which  was  then  used  to  obtain  an  expression  for  the  friction

coefficient CF. We then proceeded for solution of the or treatment of the turbulent boundary

layers. And in turbulent boundary layers we saw that the situation became so complicated that

it  is  not  possible  even  to  write  the  governing  equation,  the  statistically  it  is  having  an

universal velocity profile which would be valid in all regions of turbulent flow for flow over,

even for a flow over a flat plate is extremely difficult. 

So we have seen dividing the flow regime into 3 layers like viscous sublayer, the transition

region and a turbulent core for the case of pipe flow. For each of these regions, there was a

velocity profile. And there was also an entirely empirical velocity profile known as the one 7th

power law which can be used to fit the experimental data, especially for those points situated

near the centre. However this expression, even though it fits the data wells, it fails on the

solid wall because you cannot evaluate the gradient of the velocity at Y equals 0, that means

on the flat plate using one 7th power law, that was a major limitation. 

So then we proceeded to obtain a momentum integral approach, an integral approach which

resulted  in  a  momentum  integral  equation  and  there  with  some  approximation  with  an

assumed value, assumed expression of velocity profile where the constants were evaluated

with the boundary conditions that we have on the plate, namely no slip condition and at the

edge of the boundary layer, that means where the velocity in the X direction would be equal

to the free stream velocity and the velocity profile approaches the free stream with 0 slope.

Using these conditions and assumed velocity profile, we could move ahead to obtain the,



what would be the boundary layer growth in the case of turbulent flow and what would be the

friction factor expression. 

We then used the same concepts for the treatment of the thermal boundary layer. In thermal

boundary layer before that it is the equation of energy applicable inside the thermal boundary

layer  after  the  standard  simplifications  which  are  boundary  layer  approximations,  this

equation  is  coupled  to  the  velocity  boundary  layer  equation,  namely  the  Naviar  Stokes

equation for flow inside the boundary layer. The coupling appears because of the appearance

of velocity VX and VY in the energy equation. So it is a one-way coupling. 

We showed in previous classes how to solve this thermal boundary layer growth and the

velocity, when the temperature gradient at the solid liquid interface through the simultaneous

solution of the momentum equation as well as the energy equation. So for laminar flow we

have  obtained  an  expression  for  Nusselt  number  which  is  the  convective  heat  transfer

coefficient multiplied by length scale divided by the thermal conductivity of the fluid, this

Nusselt number was related to 2 dimensionless groups which appeared automatically through

the  nondimensionalization  of  the  governing  equation,  namely  Reynolds  number  and  the

Prandlt number. 

So  we got  compact  expressions  of  Nusselt  number,  the,  with  the  Engineering  parameter

convective heat transfer coefficient embedded into the Nusselt number. So that is, the H is the

one that we would like to evaluate and the corresponding dimensionless group is Nusselt

number.  So  we  got  relationship  between  Nusselt  number,  Prandlt  number  and  Reynolds

number with a constant in front of it. But that was for laminar flow, I did not say anything

about the turbulent flow inside a thermal boundary layer. 

The treatment of turbulent flow inside a thermal boundary layer is more complicated, more

complex  because  you  are  going  to  have  transfer  of  heat  not  only  by  conducting  an

convection, there will be the formation of eddies and these eddies. And these eddies would

carry additional heat, additional energy for flow when for the case when the flow inside the

boundary layer turns to be turbulent. So the presence of eddies creates or imposes additional

problems in solving the energy equation. 1st of all we do not know what would be the right

form of energy equation. 

So even if we express the energy equation in the same way as we have done for the case of

momentum boundary layer, that is in terms of fluctuating components, it is almost intractable.



So we have to think of some ways to use the solutions that we have already obtained for the

case of momentum boundary layer, both in laminar flow as well as in turbulent flow is there

any way to use, to project those relations and or correlations for the case of turbulent flow in

thermal  boundary  layer.  So  that  means  I  am trying  to  find  an  analogy,  a  logical  set  of

conditions which must be met, so that the results of momentum transfer in turbulent flow can

be  projected  and  to  obtain  the  results  connecting  the  dimensionless  groups,  relevant

dimensionless groups for the case of turbulent flow inside a thermal boundary layer. 

And if we can establish this transformation, then the same logic can also be obtained, can also

be used to obtain the relation between the relevant parameters in for mass transfer inside the

concentration boundary layer. The way we have the velocity boundary layer we have seen

what is the thermal boundary layer. Similar to thermal boundary layer, I will also have the

concentration boundary layer in which the species concentration would change from some

value on the solid plate to a constant value in the free stream of the flowing solution above

the solid plate. 

So the results of, so it would be, it would be the objectives, as I mentioned at the beginning of

the course the objective of this course would be how, why and when we can transform the

relations  obtained  in  hydrodynamic  part  of  the  boundary,  solution  of  the  hydrodynamic

boundary layer, how can you use that as a solution of the thermal boundary layer and then for

the concentration or the mass transfer boundary layer. So I am not going to do that right now,

that would be the last topic of this course. So I would very quickly go through some of the

salient features of the mass transfer process which is complicated because now we are dealing

with mixtures of at least 2 components, maybe a solute and a solvent. 

So at least 2 species are present in the case when we are having net transport of one species

from the one point to the other. Now the net transport asks the species from one point to the

other exactly like in the case of heat transfer, it can take place because of actual flow from

point A to point B which carries component 1 from A to B. So that is due to the imposed flow

of the solutions from point A to point B carrying component A from one location to the other,

which is nothing but the convective motion of the species, the motion of the species due to

convection imposed on the flow field. 

There  would  be  another  way  by  which  mass  gets  transported  which  is  similar  to  the

conduction heat transfer,  heat transfer by conduction. So whenever there is a temperature

gradient,  even  if  there  is  no  flow we will  still  have  heat  transfer  because  of  molecular,



because of mobile means, because of molecular mechanism. So this conductive heat transfer

which depends not only on the concentration difference but on the gradient of concentration

between,  gradient  of  temperature between 2 points,  exactly  similar  phenomena exists  for

mass transfer as well which are aptly called the diffusive mass transfer. 

So in diffusion or diffusive mass transfer, mass travel from one location to the other if there is

an imposed concentration gradient, the concentration gradient may exist as a result of several

conditions. But if there is a temperature, if there is a concentration gradient, then mass gets

transferred from one point  to  the other.  So similar to heat flux,  similar  to  Fourier’s  law,

similar to Newton’s law of viscosity, the mass flux as in the case of heat flux is proportional

to the concentration gradient. Think of this similarity with the temperature gradient. 

So mass + is proportional to the concentration gradient and the proportionality constant with

a - sign, since mass always travels from high concentration to low concentration, the concept

of this expression is commonly known as the diffusivity of one in two. It is expressed in D, in

the form D with a subscript AB which is the constant, which is the diffusion coefficient of A

in B.  Now some of  the relations this  is  known as the fixed law of  diffusion which like

Newton’s law or Fourier’s law is a phenomenological equation, it cannot be derived, it can, it

was arrived by looking at the data of many experiments over a large range of concentrations

and it was found that a mass flux is always proportional to the concentration gradient. 

So before we use fixed law and other physical boundary conditions in solving, in modelling

the mass transfer process, the same way we have done for heat transfer, it would be, I would

like to go quickly through the relations, the established relations in mass transfer that I am

sure you already know, it is only going to be a recapitulation of what you have studied in

your mass transfer 1 or mass transfer 2 courses. So our study of mass transfer and modelling

of processes involving mass transfer, the mass transport process, we understand, we start with

the fact, with the with the realisation that mass transfer is a more complicated process as

compared  to  a  momentum  transfer  all  heat  transfer  because  more  than  one  species  is

involved. 

So you will have at least 2 species and in multicomponent systems, we will have more than

one species, more than 2 species which are present in the system and therefore the, not only

the diffusion coefficients are going to be different, however the motion of the one species, the

motion of the molecules of one species in a medium will start to affect the molecules of the



medium as well. So when component A is rapidly diffusing through a stagnant medium of , of

B, then the motion of A molecules can create a movement, a flow of the B molecules as well. 

So mass transfer is definitely more complicated than heat and momentum transfer, so we will

quickly go through some of the modelling exercises of mass transfer, some of the relevant

boundary conditions of mass transfer and then we will come back to last part of the course

which is analogy between these different processes. 

(Refer Slide Time: 14:37)

So our study of mass transfer begins with some of the definitions that I am sure you, all of

you are aware of or you have studied at some point of time, but I will go through it once

again. So the mass concentration is essentially the mass of species I per unit volume of the

solution, similarly the molar concentration is simply rho I by M i, by Mi is the molecular

weight of component i. So this is the number of moles of I per unit volume of the solution.

The  mass  fraction  is  simply  divided  as  the  mass  concentration  divided  by  the  total

concentration,  the  mole  fraction  XY is  Ci  by C,  the  molar  concentration  of  one  species

divided by a focal molar concentration. 

And of course if you add rho A and rho B for a binary mixture, then the mass concentration of

A and mass concentration of B when added together would give you the mass density of the

solution.  And this rho A, as rho A is simply CA Times MA and W A which is the mass

fraction is simply going to be rho A by rho. As with the case of mass density, so mass density,

similarly the molar density of the solution is simply a sum of the individual molar densities



and we understand that XA which is a mole fraction, XA + XB equal to 1, the same way

weight fraction sum would be equal to 1 and these relations are self-explanatory. 

So we have all seen these expressions before and we will see how these expressions will be

used later on to understand, to express the mass transport process in a system where we have

both convection as well as the diffusive mass transfer. So coming back to some of the other

equations, other definitions that one can think of, one uses in mass transfer process. 

(Refer Slide Time: 16:35)

There is something called local mass average velocity which is simply rho I Vi divided by

summation of rho I overall the species. So this is the mass average velocity, the same way

you have the mass average velocity, you can also find out, will also express the molar average

velocity where simply the mass concentration is replaced by the molar concentration. So the

denominator is the total mass concentration whereas the denominator over here is the total

molar  concentration  of  the  solution.  Now  whenever  something,  whenever  a  component

moves in a, moves in the solution, then you can either fix the coordinate systems and keep

them stationary. 

So the 2 definitions of mass average velocity and molar average velocity that I have shown

you before are with respect to stationary axes. Now the mass average velocity can also be

used, let us say I have a portion of a solution in which there is a diffusing species A and this

entire species has some mass average velocity with which it is let us say moving in this

direction.  However  the species  A present  in  it  has  a  different  velocity  because  it  is  also



diffusing as a result of the bulk flow as well as as a result of a concentration gradient imposed

on it. 

(Refer Slide Time: 18:41)

So if we want to separate the diffusion from the bulk motion of the fluid, then the diffusion

velocity is something which is exclusively due to diffusion for a species A and therefore the

diffusion velocity is expressed as Vi, that is the velocity of the ith species, subtract from that

the local mass average velocity, so the difference in velocity, the additional velocity that the

ith component has is over the mass average velocity is termed as the diffusion velocity. So Vi,

the velocity of the Ith species - the local mass average velocity is termed as the diffusion

velocity of I with respect to V. 

Now the way you have expressed the diffusion velocity where the basis is taken as the local

mass average velocity, you can take the basis as local molar average as in V Star. So the

component velocity, the relative velocity of the component can be expressed with respect to

the mass average velocity or with respect to the molar average velocity, both are diffusion

velocities, one with respect to V, the other is with respect to the molar average velocity. So

these  are  the  2  diffusion  velocities  that  are  commonly  used for,  in  case  of,  in  for  mass

transfer. 



(Refer Slide Time: 19:51)

And this velocity, the velocity of this if you expand it, is simply going to be 1 by rho, 1 by

rho times rho A VA + rho B VB in which if you take the ratio of rho A by rho, it is simply

going to be the weight the weight fraction of component A and similarly V Star which is a

local  molar  average  velocity.  If  you  expand  this,  it  is  simply  going  to  be  1  by  total

concentration, then molar concentration of A, molar concentration of B and the velocities of

A and B and CA by C is nothing but the fraction, the mole fraction of component A and mole

fraction of component B. So these 2 relations directly follow from the definition of the mass

average velocity or the molar average velocity. 

(Refer Slide Time: 21:17)



Now since we have defined the diffusion velocities in this way, the diffusion velocities can

then be converted to fluxes. So one would be a molar flux and the other would be mass +, so

in terms of stationary coordinates, it is simply going to be rho I times V i, if you express it in

terms of mass or if express in terms of moles, it is simply going to be C I Vi, these Vis are

with respect to stationary coordinates. When you bring the same mass flux or molar flux and

take the average velocity,  average velocity V bar to be the basis,  so relative to the mass

average velocity, the mass flux or the molar flux denoted by j or capital J for the ith species is

simply going to be rho i times the relative velocity square for the relative velocity we use the

mass average velocity. 

So it can either be expressed in terms of mass or it can be expressed in terms of moles. Same

thing if we do in terms of molar average velocity, so this is in terms of stationary coordinates

where the velocity is 0, where V is 0, so it is rho I Vi. If I have a mass average velocity and I

express relative to the mass average velocity, it is simply going to be Vi - V. If I do it in terms

of molar average velocity, it is going to be Vi - V Star for the case of mass and for the case of

moles it is simply going to be Ci. 

Now this flux, be it mass flux or molar flux is generally expressed, the molar flux where J

star if you look at J star, this is the molar flux of the ith species when the flux is relative to the

molar  average  velocity  which  is,  so  Ji  times  Ci  times  Vi  -  V  Star,  this  molar  flux  is

proportional to the concentration gradient. That is the statement of Fick’s law. So Fick’s law

essentially tells us that the molar flux Ji Star is proportional to the concentration gradient. So

Fick’s law is simply the flux, molar flux of component A when expressed with respect to the

average, molar average velocity is simply - DAB times divergence of XA. 



So if C is constant, I can put C inside, it is simply the other way of writing it is time CA. So

this for a rectangular coordinate system can be written as - DAB times Dell CA Dell X + Dell

CA Dell Y + Dell CA Dell Z. So see the similarity that we have for the case, for decay with

heat transfer and with mass transfer. So this  is the statement of Fick’s law and from our

definition of molar flux, this is the definition of molar flux when expressed in terms of V

start.  So I expand it and CA VA is nothing but the smaller flux of A and then when you

expressed this V Star, the formula would simply be CAVA + CB VB by C. CA by C is the

molar, the mole fraction, so your JA is equal to NA - XA times NA + NB. 

Plug it in here and what you have is another form of, another form of Fick’s law. So this is,

this  NA is  relative  to  stationary  coordinate  and  what  it  tells  is  that  the  molar  flux  of

component A relative to stationary coordinates from here is a sum, is an algebraic sum of XA

times NA + NB where XA times NA + NB is the flux due to the bulk motion of the fluid. So

CA Times V star, V Star denotes the molar average velocity. So if we have a bulk velocity

present, bulk motion present in the fluid, it is also going to contribute to a flux of A. 

As I said the species A can move from point A to point B if there is a bulk motion. There may

not be any difference in concentration, so a sugar solution, a constant concentration sugar

solution may be forced, may be allowed to move from point A to point B by imposing a

pressure gradient. There is no diffusion, since the concentration is same everywhere, but what

you have a bulk motion of the sugar molecules from point A to point B. So this kind of bulk

motion imposed by the flow only is the significance of the 1st that we have here which is XA

times NA + NB. 

So this is due to bulk motion. Sometimes in addition to bulk motion or even in the absence of

bulk motion you have concentration difference. So if you have concentration difference or

more correctly if you have a concentration gradient present in the system, then this is going to

give rise to say diffusive motion of A, species A. So the total effective motion of species A is

the algebraic sum of the species movement due to bulk motion and or the species movement

due to the concentration gradient imposed due to certain conditions present in it. So therefore

the problem of Fick’s law is to be resolved, the 1st thing that needs to be resolved is what is,

how to get rid of NB from the expression of NA. So NA is XA NA + NB - DAB Dell of

concentration of A. 

So 1st of all it may be mentioned that it  is diffusion only process, that means there is no

imposed bulk flow. So if it is a diffusion only process, then the 1st term on the right-hand side



which signifies bulk motion can be dropped. So that is one way of getting rid of NB which is

the unknown, which is which appears in this expression. So if it is a bulk motion, if it is a

diffusive motion only situation, then this can be dropped. In some cases there would be a

relation between NA and NB which arises due to some other factors. 

For example it could be case of equimolar counter diffusion. That means for one mole of A

moving in this direction, one mole of B is moving in the opposite direction. So if this is a

case of equimolar counter diffusion where NA is going to be equal to - NB, for that specific

case NA is going to be equal to - NB and therefore this term, the contribution of this term

would be 0. So the expression would be same as that of diffusive motion only situation but

for different reasons. Since it is equimolar counter diffusion, NA and NB would cancel out

each other. 

There are, in some cases the stoichiometry of the reaction if it is a reacting system, let us say

3 moles of A comes and reacts on a catalyst surface generating 2 moles of B which then travel

in the reverse direction towards the bulk. So for every 3 molecules of A coming to a specific

direction 2 molecules of B would have to travel in the opposite direction at steady-state in

order  to  maintain  the  concentration  at  each  point,  either  independent  of  time.  So  the

concentration of A may vary, concentration of B may vary but the concentration at the fixed

location is not, will not vary with time. So that is that is what the steady-state is. 

So in some cases stoichiometry of the reaction, stoichiometry of the reaction taking place

between 2 reacting components would give you some idea between the relation between

what,  how  NA is  related  to  NB.  So  in  absence  of  any  such  generalisation,  any  such

simplification, the expression to be used for the molar flux of component A will consist of 2

terms, one due to bulk motion and other due to the concentration gradient. So this DAB

which is the diffusion coefficient of A and B for, they behave slightly differently for gases

and for liquids, okay. 

So  most  of  them  increase  with  an  increase  in  concentration  in  temperature,  so  as  the

temperature increases, this DAB, it is a function of pressure, temperature and it is also a

function of,  it  could be function of composition,  composition of the gas mixture.  So the

gases,  further  gases  and liquids,  with increasing  temperature DAB increases  and at  low-

density it is almost composition independent for the case of or for the case of gases. So what

we  have  then  we  need  to  see  the  similarity  between  DAB which  is  the  mass  diffusion



coefficient expressed either in terms of mass or in terms of mole, compare that with gamma

which is mu by rho and compare that with K by rho CP which is Alpha. 

So if  you compare DAB, the diffusion coefficient  of  A and B, mu by rho,  which is  the

kinematic  viscosity  and  K  by  rho  CP  which  is  the  thermal  diffusivity,  so  momentum

diffusivity, thermal diffusivity and mass diffusivity, all will have units of metre square for

second. So these 3 are similar in nature, the mass diffusivity, the momentum diffusivity and

the thermal diffusivity, they have the same unit as metre square per second and all of them

denote the transport of mass, the transport of momentum or the transport of energy when you

impose a concentration gradient, velocity gradient or a temperature gradient. 

So this would be the beginning, the start of the, start of the analogy, finding the analogy

between different processes heat transfer, mass transfer and momentum transfer. But before

we reach that point what I would do in the subsequent process, 3 or 4, 4 or 5 classes after

today is to show you examples by which 1st of all a shell component balance can be used, can

be used to obtain the concentration profile of a specific component in a system where it is a

diffusion only process, where both diffusion and diffusion and bulk motion convection is

present and different ways by which NA can be related to NB. 

The molar flux of A and the molar flux of B, what is the relation between them apart from

counter diffusion, equimolar counter diffusion and so on. And finally the, like heat generation

in the case of energy question, we can also have generation of a species due to reaction,

generation or depletion of species due to reaction in a medium in which A is diffusing. So if A

is diffusing and as it defuses, it reacts with another reactant B present in 8, then A is going to

get depleted as it moves in the solution.

So reaction, chemical reaction, homogeneous chemical reaction can act as a source or a sink

term in the mass balance equation. So when we write the shell balance of shell component

balance, the same way we have done for, for the previous cases, heat transfer and momentum

transfer. The source or sink term, for example in nuclear heat source or an electrical heat

source, the equivalent of that in the case of mass transfer would be, if there is a reaction

which is consuming A or a reaction which is producing A in the entire domain of transfer of A

from point 1 to point 2. 

So a homogeneous reaction would appear as a source or sink term in the governing equation.

So contrary to that if it is a heterogenous reaction, that means if it  is a, let us say it is a



catalytic reactions well this is the catalyst surface and the reaction of A getting converted to B

is going to take place only on the catalyst surface, it is a heterogeneous reaction. Therefore A

diffuse and reach at this point when it gets converted to B and the products will diffuse back

to the mainstream. In that case, since in the path of diffusing A, it does not encounter any

reaction, generation or depletion. 

The generation or depletion takes place only at a specified location, that is on the catalyst,

heterogeneous reaction, this condition would appear as a boundary condition in the governing

equation. So we have to keep in mind the difference between the heterogenous reaction and

the homogeneous reaction, one in which it appears it appears as a source or sink term in the

governing equation itself and the other variant appears as a boundary condition. So we will

see examples of that, examples of modelling the process in the coming 4 or 5 classes and then

we will finally move to the final part of this course which is to see, to evaluate the analogy

between heat, mass and momentum transfer. 


