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Free Convection.

So in previous classes we have seen the use of the energy equation, how it can quickly and in

a more convenient fashion give us the governing equation for any heat transfer process. Be it

conduction,  convection,  a source where heat can be generated,  transient effects  and most

importantly how to take care of the viscous heat dissipation. So the dissipation function Phi

that  has  also been included in the development  of the energy equation.  Even though we

understand that it is going to be irrelevant in most of the cases, unless some very special cases

in which there will be a large velocity gradient or we are dealing with high viscosity and so

on. 

Then we proceeded to obtain the governing equation for forced convection heat transfer in a

tube  where the  side walls,  through the side walls,  a  constant  heat  is  being added to the

system. And then we have seen that  how easily  we could obtain the governing equation

through  the  use  of  the  energy  equation.  So  we  took  the  energy  equation  in  the  radial

coordinate system and cancelled out the terms which were not relevant. So what we obtained

is  the  governing  equation,  still  a  PDE  and  with  we  could  also  identify  the  boundary

conditions. 

Then we, we have nondimensionalized the equation, and we took the special case, a special

limiting case in which the fluid has traversed a significant distance in the tube such that we

can assume that the, that the profile of the fluid temperature will not change with the radial

will not change anymore, the shape of the profile will remain unchanged, however a constant

amount is going to be added as the fluid front moves more and more into the comment to the

tube. 

So this assumption of that we could separate the R dependence of the temperature profile and

Z independence of the temperature profile as the sum of 2 distinct functions, enable us to

convert the PDE to an ODE, so we got a limiting solution which is truly valid when eta,

dimensionless variable denoting the axial distance when eta tends to infinity, what it has been

shown that we get to a reasonably good approximation of the temperature profile, even for

smaller, lower values of Epsilon, the axial distance as well. 



And then we have also seen that 2 dimensionless numbers, namely the Reynolds number and

Prandlt number appear automatically in the governing equation. So if we have to express or if

we have to represent the data of force convection for which, let us say for a situation for

which no standard relations can be obtained, so it would be customary, it would be expected

that the data should be fitted with some function of Reynolds number and Prandlt number. 

So the utility, the importance of dimensionless groups has been underscored by this, by the

analysis where we could identify the important terms, the important dimensionless numbers

in the description of the entire process. Since we have done, we have worked with forced

convection in the last class, let us try to see what would be the case when we have free

convection or natural convection. So forced natural convection is there everywhere, okay, it is

the most common form of heat transfer. Even if you do not have any forced flow of fluid over

a surface which is hot or cold, you will always have natural convection. 

So the process is characterised by a change in buoyancy, so the change in buoyancy as a

function of temperature will create lighter fluid near the top and heavy fluid near the bottom,

so if this is an object, whose temperature is different, higher than that of the surrounding

fluid, then the fluid closest to the surface, closest to the hot surface, its buoyancy will be

changed and therefore it would start to rise and as it rises, its temperature will progressively

increase and therefore and then it will go to the bulk. And whatever is rising from here is

going to be repressed by cooler fluid from the side. 

So therefore a cycle will start in which the cooler air will extract heat from the hot surface

and this process, even though the heat transfer coefficient is significantly lower than that of

force convection, but the ubiquitous nature of the free convection would ensure that there

would be substantial heat losses, even in the absence of imposed flow. And in many of the

conditions you need to take into account the heat transfer, both due to forced convection as

well as free convection. So mixed condition most of the times exists when heat transfer is

taking place from a hard surface. 

So the free convection is characterised by no imposed flow, a change in buoyancy resulting in

upward for the case of hot surface, upwards flow of the a, upwards flow of the fluid to be

replaced by the cooler fluid from the surrounding and thereby it has thereby the heat transfer

process continues as long as there is a temperature difference between the hot surface and the

fluid surrounding it. 
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So we are going to 1st start with a free convection heat transfer from the simplest possible

geometry, that is that of a vertical plate. So let us assume that we have a vertical plate which

is in contact with air, so this is a vertical solid plate whose length is H and whose temperature

is maintained at a constant temperature of T0. So T0 is the, T0 is the temperature of the solid

and we have the coordinate system as this is Z direction and this is the Y direction and we

will assume that in the X direction, it is wide enough such that the process is not going to be

governed, is not going to be dependent on whatever happens in the Z direction. 

So then what you would have is the air over here has a temperature, the temperature which is

different from the temperature of the solid and let us assume that the temperature here is at T

1. So if you draw the picture profile for such a case, it would probably look something like

this, when it would asymptotically reach T1. So I am plotting T the temperature of the air

near the wall - T1. So T - T1 would slowly approach 0 as we move away from the plate. 

So this is the temperature profile or rather a temperature difference profile which one would

expect for the case of a hot plate, hot plate in contact with the cooler fluid. So what happens

is the fluid near the walls, its buoyant force would force it to move in the upwards direction

and cooler fluid from the surrounding is going to come and replace it. So is going to be a

motion in this direction and a filling up of the void left by the upwards moving fluid by that

from the surrounding. 

So if I draw the velocity profile, it would probably be, this, because of no slip condition, it

will start with velocity equal to 0 and then it would rise and then slowly decrease till it comes



to be equal to 0. So this is going to be the velocity profile, however my, in the drawing it is

greatly exaggerated and this profile would be skewed towards the solid plate. That means

ideally it would probably look like something like this. Okay, because of clarity, in order to

bring in clarity I have drawn it in this way but the peak is going to be towards the solid plate

and that is what the profile would be. 

So this VZ, the velocity in the Z direction is definitely going to be a function of Y. Now the

problem statement therefore is that a flat plate heated to a temperature T0 is suspended in a

large motionless body of fluid which is at a temperature T1. And we need to find out the heat

loss, what would be the heat loss from such a system in terms of the velocity, in terms of the

physical  properties,  for  example  mu  and  K  and  so  on.  So,  in  this  case  the  convective,

convection, free convection, this is a case of free convection and the equation of motion that I

am going to write, the equation of continuity which is Dell VY by Dell Y + Dell V by Dell Z

is going to be equal to 0. 

There  would  be  some  VY,  otherwise  if  there  is  no  VY,  then  there  would  not  be  any

replacement of the hot air that has, that has left this space. So VY, even small, it would still be

present in the governing equation. So this is equation of continuity and then I am writing the

equation of motion, which is rho VY Dell VZ Dell Y, this is the Z component because most of

the most of the motion is in the Z direction. So I am writing the Z component of equation of

motion + VZ dell VZ + Dell Z is equal to mu times, these are the viscous transport terms. 

So this  is  the additional  term which appears  in  the equation of  motion,  Z component  of

equation of motion, so this refers to, this essentially tells us the buoyant force, the expression

for the buoyant force and the beta is the coefficient of thermal expansion. So if beta is the

coefficient of thermal expansion, so beta is simply defined as the change in volume with a

change in, with the change in temperature, nondimensionalized by the volume. So this is the

change in volume with respect to the original volume as a result of change in temperature. 

So I tried the change in volume as beta times V times Delta T and therefore the buoyant force,

since this is the change in volume, the buoyant force would simply be rho G Delta V which is

rho G beta Delta T and the buoyant force per unit volume which everything in equation of

motion is expressed in per-unit volume, so the buoyant force per unit volume would simply

be equal to rho G beta Delta T. So this is the form of the buoyant force per unit volume which

is used in here. 



Because  unlike  gravity,  since  motion  here  is  sustained  by  a  change  in  temperature.  So

everything  is  expressed  in  terms  of  the  thermal  expansion  coefficient  which  is  an

experimental parameter, which is measured experimentally for most of the gases over a wide

range of temperature. So it is customary to express the buoyant force in terms of the thermal

expansion coefficient. So utilising the definition of thermal, thermal expansion coefficient, I

would be able to obtain what is the change in volume as a result of change in temperature,

what is the force, the buoyant force to the change, due to that change in volume and therefore

we can find out what is the buoyant force per unit volume which can then be used in equation

of motion as the prevalent body force. 

So  fundamentally  I  am not  doing  anything  new,  I  am simply  substituting,  I  am simply

separating the expression of buoyant force in the body as the body force term in the equation

of motion. So now with this equation of motion in place, I think we are now in a position to

write the equation of energy as well. 
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So the equation of energy in this case would simply be rho CP V Y Dell Dell Y of T - T1

where T is the temperature at any point in the rising film of the fluid and T1 is a constant

temperature, reference temperature we take this reference a preacher to be the temperature far

from the wall. So this is the constant fluid temperature that you would get when you, when

you move away from the plate. So this is simply a constant. However the temperature in here

is going to be a function of both of Z and of Y. 



So that is why I have to use a partial sign and the 2nd term would simply be VZ, Dell Dell Z,

again T - T1, and the, so this is the convective flow term. And the 2nd term that the right-hand

side what I have is K times Dell square T - T1 divided by Dell Y square + Dell square T - T1

by Dell Z square. So in all these cases the left-hand side refers to convective heat transfer,

right-hand side refers to conductive heat transfer and there is no, there is no heat generation

term as well as no viscous dissipation since the flow is very small, very low velocity flow. 

So what I have is then the 3 equations that I need to solve, equation of continuity, equation of

motion and the equation of motion I express it in terms of the free convection form of the

equation of motion and finally what I have is equation of energy. Now if you look closely

into these 3 equations, the temperature rise appears in equation of energy, it also appears

equation of motion. Velocity, the components of velocity present in the equation of motion

and also in equation of energy. 

However it  is  the presence of the temperature term in both the equation couples these 2

equations in a  more comprehensive way, in a way that  we have not seen before.  So the

presence of  temperature term makes it  a  two-way coupling,  the energy equation and the

equation of motion are coupled both ways. You will not be able to solve any of equations

without solving the other one or in other words both the energy equations and the equation of

motion will have to be solved simultaneously, so that makes it more complicated. 
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So before we do that, before we attempt to do that, let us 1 st find out what are the boundary

conditions for such a case. So the boundary conditions that you would get for a vertical plate



where this is the Z direction and this is the Y direction, the boundary conditions, the 1st one is

that at Y equals 0, due to no slip condition, both VY and VZ will be 0 and temperature is

going  to  be  equal  to  T0,  where  T0  is  the  temperature  of  the  solid  plate  and  T1  is  the

temperature of the plate at a point far from it and therefore it is a constant temperature. So

both these temperatures are constant temperatures. 

And Y equals infinity, that means at a point far from it, again VY and VZ, both will be 0 and

T would be simply equal to T1. So at a point over here, there is no effect of the solid plate

and therefore no motion is induced because of the presence of the solid plate and therefore all

of them are going to be equal to 0. And the 3 rd condition is at Y equals - infinity, VY equals

VZ equal to 0. So Y equals - infinity refers to the point over here. So any motion of the, any

motion of this is going to be like this, so therefore this region remains unaffected by the

presence of the solid plate. 

So Y equals - infinity is at a point far from, far from the plate and below it and therefore at Y

equals - infinity, VY is equal to VZ equal to 0 and T is again going to be equal to T1 which is

the temperature, which is the temperature of the air surrounding it. The next, so the equation,

these 2 equations will have to be solved with these 3 boundary conditions. As we have seen

so many times, it would be much better if we can nondimensionalize the entire thing. 

And in order to do that, I define Theta the temperature as T - T1, dimensionless temperature

is 0 - T1, the Zita is defined as Z by H, so this is the dimensionless Z component and what I

have Eta, which is the dimensionless Y, which is defined, all these are defined as B by mu

Alpha H to the power one fourth times Y. The phi Z, this is the velocity in the Z direction is

mu B Alpha H times to the power half times VZ. So this is the dimensionless Z velocity and

Phi Y is the dimensionless Y velocity which is defined as mu H by Alpha cube B to the power

one 4th into VY. 

And Alpha is KY rho CP is the thermal diffusivity as we have seen before and B is simply the

buoyant force which is present in the system and these are the different ways by which, these

are the different nondimensionalization parameters which are introduced in it. Again you can

see the derivation and detailed treatment of this equation in your textbook of Bird, Stuart and

Lightfoot. I would only discuss about the salient features of the solution and the physical

concepts involved. So it is not important for you to memorise any of these, they are going to

be, they are in their texts. 



If  ever  a  problem  comes  in  which  you  have  to  nondimensionalize,  what  could  be  the

nondimensional parameters, they would be specified in the problem. So you do not have to

invent how to nondimensionalized a specific variable in order to make the equation more

compact. So do not try ever to memorise this, just try to see the pattern and be rest assured

that it would be provided to you in any exam, which and this is given in detail in Bird, Stuart

and Lightfoot. 
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So when you put these nondimensionalizing parameters into the governing equations, what

you get is the nondimensional equations, nondimensional equation becomes Dell Phi Y by

Dell Eta + Dell Phi Z by Dell Zita, this is the equation of continuity and the equation of

motion becomes phi Y Dell Dell Eta of phi Z + phi Z Dell Dell Zita of Phi Z is equal to Dell

square phi Z by Dell Eta square + Theta where this Theta is the temperature term. These are

all values of velocity, whereas this Theta is nothing but the temperature term. 

And the equation of energy becomes phi Y Dell Theta by Dell Eta + phi Z Dell Theta by Dell

Zita  equals  Dell  square  Theta  by  Dell  eta  square.  So  this  is  the  convective  momentum

transport,  convective  momentum  transport,  diffusion  momentum  transport  or  conductive

momentum transport,  this is a buoyant body force present in the system. This one is  the

convective transport of energy, Phi Y, Phi Z refers to the velocity in the Y and Z direction,

this Theta is the temperature change with respect to Eta and temperature change with respect

to Zita. 



And what you would get here then is, this is the conductive term. So it, when you convert

these 2, convert  the boundary condition, it  becomes that at Eta equals 0, at Eta equals 0

simply tells you that at Y equals 0, that means on the plate there would be no slip condition

and the temperature would simply be equal to T0. So at Eta equal to 0, both the velocities Phi

Y and Phi Z would be equals 0 and the temperature, dimensionless temperature would be

equal to1. And Eta equals infinity at a point far from it there would be no velocity and the

temperature is going to be equal to T1. And if the temperature is going to be equal to T1, then

Theta is going to be equal to 0. 

So with this geometric condition I again write phi Y is equal to Phi Z equals to 0 and Theta

equals 0 and at Zita equals - infinity, that means at the point where Z equal - infinity at really

at this point that would be no velocity and the temperature would again be equal to T1, so

Theta would be equal to 0. So Phi Y equal to Phi Z equal to 0 and your Theta would again be

0.  So  these  3  questions  would  have  to  be  solved  this  with  these  following  boundary

conditions. 

However  an  analytic  solution  to  this  is  still  not  possible,  but  we  can  make  a  heuristic,

heuristic type of solution and then try to see is it possible to reduce the problem in such a way

that a, that we can make a solution out of such a complicated system. 1st of all the left, if you

remember  the  left-hand  side  of  the  equation  of  motion  refers  to  convective  transport  of

momentum. So if you see the dimensionless form of this equation of motion in here, what

you  would  see  is  this  left-hand  side  where  you  have  the  Prandlt  number,  this  refers  to

convective transport of momentum. 

But the convective transport of momentum is strongly dependent on the velocities, velocity in

the Y direction in velocity in the Z direction. Rather convective passport is dependent on

velocity. So save the velocities are very small, then the effect of the left-hand side of the

Naviar Stokes equation, there is the effect of convective transport would be small.  In the

limiting case when you have creeping flow, you remember we have studied creeping flow

before. So if we have creeping flow, then this entire left-hand side can be made equal to 0. 

But if it is not, here the problem may not be equal to creeping flow but it is still a slow flow,

so the effect of the left-hand side of the Naviar Stokes equation on the final form of the

solution should be significantly smaller. So that is the assumption that we are making. Since

free convection flow is characterised by slow upward movement of the fluid, so therefore we

do not expect the effect of convection to be significant on the final solution of the problem. 
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So it, we are not saying it is 0, such in the case of creeping flow but we are seeing its effect is

going to be small. Now let us see how we can get the average heat flux which is Q average

which can simply be equals K by H - Dell T Dell Y at Y equals 0. So this is average heat flux

from the, average heat flux from the walls to the outside is, if you forget about this K, then

this would essentially, this part is the average value of Dell T Dell Y. So this average value of

Dell T Dell Y which by definition is this, multiplied by K with a - sign would give you the

conductive heat lost by convection, the heat lost by conduction combination methodology

from the solid plate to the atmosphere. 

So this is nothing but the average of Dell T Dell Y. So if you nondimensionalize this, you

would simply see that it is going to be T0 - T1 B by mu Alpha H to the power one fourth and

instead of temperature gradient I am going to write dimensionless temperature gradient which

is going to be - Dell Theta by Dell Eta at Eta equals 0 times D Zita. So these are constants as

we have defined before and we are going to call this, the entire thing by a constant, by, say

we denote C for this entire term, because the rest of the things you can, you can calculate

based on the geometry and property. 

So it is going to be C K by H times T0 - T1 Grashof number, Prandlt number to the power

one  4th.  So  what  is  Grashof  number,  Grashof  number  is  defined  as,  which  appears

automatically is rho square beta G HQ Delta T by mu square. And Prandlt number we know

that it is simply mu by K. So what we have then is if we could evaluate this, then we have a

next  equation  for  the  average  heat  loss  from  the  solid  surface.  Now  what  is  this,  we

understand that this Theta is going to be a function of Eta, Zita and Prandlt number. If we



look at the governing equation, then this Theta would simply be a function of Theta, Zita and

the constant Prandlt number. 

So if Zita is a function of Eta, Zita Prandlt number, Dell Theta by Dell Eta at Eta equals 0 will

only be a function of Zita and Prandlt number. So if Theta is a function of Theta, Zita and

Prandlt number, then tell Theta Dell Eta evaluated at a specific value of Zita will no longer be

a function of Eta, it is only going to be a function of Prandlt number. What we are doing is we

are integrating, it is a definite integrals from 0 to 1 over D Zita. Since we are taking a definite

integral of the gradient over Zita, it  is a definite integral, so this entire thing cannot be a

function of Zita, it can only be a function of Prandlt number. 

So what this simple heuristic logic tells us is that this term which we in order to evaluate this

we have to solve the partial differential equations. But we do not need to solve it if we look

carefully  and think about  the functional  form of Theta to be a function of Eta,  Zita  and

Prandlt number. Since I am taking a derivative of that at a specific value of Eta, it does not

remain a function of Eta, it is a function of Zita and Prandlt number. So if I, since I am taking

a definite integral over Zita, so it no longer remains a function of Zita, it is only a function of

Prandlt number. 

So the entire problem boils down to finding out this as a function of Prandlt number. And we

also know that even though it is a function of Prandlt number, it must be a slow or a weak

function  of  Prandlt  number  because  we  have  earlier  said  since  the  flow rate  is  slow in

convective heat transfer at the limiting case it approaches the creeping flow. But this is not

the  case  of  creeping flow,  we have  still  very  slow flow.  Since  it  is  very  slow flow,  the

dependence of the solution on the values of the Prandlt number will be small, will be very

small. So we do not need to solve equations, we just need to find out what is the value of C. 
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And when experimentally the values of C were calculated for different values of Prandlt

number for Prandlt number equals 0.7, this value is 0.517, for 10 it is 0.61, for 10 square it is

0.65 and for 10 cube it is again 0.65. So we can see that the value of this C experimentally

obtained does not depend strongly on the value of Prandlt number. So the average heat flux,

the average heat flux that from a heat from a vertical plate would simply be equals 0.6 times

K by H T0 - T1 Grashof number, Prandlt number to the power one 4th. 

So this  is  an expression which you have obtained by looking at  the governing equation,

looking at the significance of each of these terms and recognising that you do not need to

solve the problem, you just, you identify the correct figure of the equation saying that it is a

slow flow, so the effect of convective heat or mass transfer, convective, sorry convective heat

or momentum transfer would be small. So the integral which you need to calculate from the

solution of  the coupled PDEs, you do not  need to  do that,  the integral  is  going to  be a

function only of Prandlt number. 

And it is very weak function of Prandlt number, so if anyone can tell, anyone can tell you

what is that value of the function for one value of Prandlt number, you are safe to use it over

a wide range of Prandlt number, wide range of fluids experiencing different conditions and

you will still be within the limits, still be able to predict what would be the total heat loss

from a vertical plate which is placed in a stagnant body of cold fluid. So your analysis makes

the solutions, makes the requirement of the solution of the PDEs redundant. So here is an

example where an analysis, an understanding of transport phenomena can create, can reduce

your workload greatly in a minute in a significant manner. 



And this is one of the beauties of transport phenomena, study of transport phenomena which

from 1st principles tells you how to deal with a system from 1st principles and arrive at a

solution without actually solving the governing equations. So what we see over here is, what

we have obtained over here is a formula for the average heat lost by the solid surface as a

function  of  K,  Grashof  number  and  Prandlt  number,  which  are  all  Thermo  physical,

combinations of Thermo physical properties, H is the geometry and T0 - T1 is the imposed

temperature gradient. 

And since by definition your Grashof number contains, Grashof number is, contains Delta T

in this  form. So this  Delta  T and this  Delta  T essentially tells  you that  the Q in natural

convection is proportional to Delta 2T to the power 5 by 4. So this is also a relation which

directly follows from this expression and which has been widely used, widely cited for the

analysis of natural convection. 


