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Lecture-38.
Forced Convection.

So we would start our analysis of forced convection and we assume that when we have forced

convection in a tube with a constant heat flux that is supplied through the walls, so there can

be 2 different types of conditions, one is constant temperature condition where the tube walls

are maintained at a constant temp at the 2nd, more common is which is a constant heat flux

condition, where through an external agency, constant heat flux is provided through the tubes,

so that you walls. 

So therefore as the liquid starts to move in the tube, its temperature will keep on changing,

will keep on increasing. And since we have flow and the flow, we will assume it to be in

laminar region and the flow is taking place as a result of imposed pressure gradient as well as

gravity. So we can think of a vertical tube in which the liquid is flowing downwards because

of imposed pressure gradient, higher pressure the top as compared to the lowermost point and

the gravity is  also acting in this  direction,  therefore the entire flow, even though it  is  in

laminar region, it will be under the effect of surface force which is pressure and body force

which is gravity. 

We know from our study of fluid mechanics that this type of situation gives rise to a parabolic

velocity profile, where the velocity starts to vary as as a function of radius, as a function of

radial distance from the centre line. So this parabolic velocity profile needs to be known a

priory, that means whatever be the flow condition, we should be able to solve it to obtain

profile of the velocity distribution inside the conduit  in order to use,  in order to use that

velocity profile in our analysis of the energy balance of the system. 

So the 1st job is to obtain is to decide about the shell across which we are going to the going

to find out what is the rate of heat in, rate of heat out, + if there is any generation of heat

inside the shell which is not there in this, for this specific problem. And as a result of all

these, there would be energy stored, changing, rate of change of energy stored in the system

that would be the form of the equation. So heat in - heat out + generation is equal to the rate

of storage. 



When we talk about heat in into that shell, we appreciate that if this is the shell, then there is

flow in this direction,  so with flow comes some energy which we call  as the convective

transport of energy. And since there is a temperature gradient with the axial position during

flow, since the tube walls are heated, there would be temperature gradient in this direction

which would also create a flow, this time conductive heat flow in the Z direction where the Z

is the axial direction. 

I have a tube wall like this and the temperature would obviously be maximum near the tube

and as I move in this direction, that temperature would progressively decrease. So there is a

gradient in the R direction, gradient in temperature in the R direction as well. So there would

be conductive flow of heat from a value of higher R towards the value of lower R. That

means from the tube wall, there would be flow of heat towards the centre line. 

If the system is different, that means a hot fluid is flowing and the tube wall is being cooled,

then the direction of this heat would simply be in the opposite direction. We have we are

deciding about the smaller dimension of shell based on which is the direction in which the

temperature is changing. So we realise that the temperature in this case is changing with Z as

well  as  with  R.  So  any  shell  that  we  assume  must  contain  2  dimensions,  to  smaller

dimensions delta and delta Z. 
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So in order to tackle this type of problem in which the temperature can be a function both of

R and of Z, the shell, the assumed shell across which we are going to going to make the

energy balance will probably look something like this, which we have drawn in the previous



class. So we have a fluid which is coming in and some amount of heat, constant heat flux Q1

being  added  to  the  side  walls.  So  it  is  a  case,  it  is  it  is  a  problem of  conduction  and

conviction,  especially  if  you consider  the  Z direction  in  which,  since  the  temperature  is

changing and I have, we have flow. 

So we will have both conduction and convection, wherever, whereas, since we are assuming

that it is a 1-D flow, there is no VR component. So if there is no VR component of velocity

for the flowing fluid, then there cannot be any convection in the R direction. So the velocity

is 0 in the R direction and therefore no convection. However the temperature is changing in

the in the R direction, so therefore the there would be always conduction in the R direction. 

So the conduction + convection in the Z direction and only conduction is going to be there in

the R direction. So this is a situation and therefore the shell that we are assuming is of length

delta Z and it is a radius, the change in radius, the cylinder, the annular area of the cylinder,

the radius, difference in radius is delta R. So we are considering a annular cylinder, annular

shaped cylinder inside the flowing fluid and we are going to, we are going to find out what is

the flow of heat into this control volume, into this shell due to conduction and convection. 

So we are 1st going to write the 1st condition which is energy in by conduction at any R. And

we assume that energy flows in this direction from R to R + delta, that is the usual convention

that we always use, in is always at the lower value, so N is always going to be at R and the

out is always going to be at R + delta R. And once we use this specific convention, then stick

to it, then the profile will automatically adjust itself based on the boundary conditions that are

provided. 

So the energy in by conduction at r, if I take this the flux to be QR which is evaluated at R

and it is, it has to be multiplied by the area, so it is going to be inside area of the annulus,

inside area of the annulus would simply be equal to 2 pie R times delta Z. So think of it in

this way that when you have, when you have the annular area and you are talking about flow

of heat in this direction, so the area that it faces will simply be equal to twice pie R times

delta Z, so where delta Z is the length of the Shell that is assumed, R is the radius, inner

radius, so therefore twice pie R times delta R would give you the area through which the heat

conductive heat in the R direction is entering the imagined shell. 

So the in term would be twice pie R times delta and the out term would obviously be at R +

delta which will be QR evaluated at R + delta R times twice pie R + delta R times Z. So that



is the out term at Z. Similarly in by conduction at Z would be equal to, which is Q times Z

evaluated  at  Z  multiplied  by  twice  pie  R  times  delta  R.  So  twice  pie  times  delta  R  is

essentially  the  top  annular  area.  So  the  top  annular  area  multiplied  by  the  heat  flux,

conductive heat flux in the Z direction would be provided, would can be written as QZ at Z

times twice pie R times delta R. 

And therefore out by conduction at Z + delta Z, that is at this point would be QZ evaluated at

Z + delta Z times twice pie R times delta R. So these are all for conductive, these are all due

to conduction. 
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When we think about convection, I am, I am drawing the figure once again. I have flow,

therefore convection, and flow which goes out, this is delta Z and this is delta R. So the heat

that energy which is coming in by convection, that means with the fluid would be equals

twice pie R delta R times VZ. I will mark this as one part of it times rho CP time T - T0 at Z.

Let me explain this once again but I think you all will remember from your study of fluid

mechanics that twice pie times delta R essentially is this area. 

So when you multiply the annular area with the velocity which is in meters per second, so

essentially these 2 together would give you in metre cube per 2nd which is nothing but the

volumetric flow rate. So this entire part is the volumetric flow rate. When you multiply it

with rho which is the density, that is in KG per metre cube, so this together would be the

mass flow rate. And the mass flow rate, so it is M dot, this whole thing together up to this

point is M dot which is the mass flow rate times CP times delta T. 



So this essentially and this T0 is some reference temperature because we cannot have energy,

we cannot express energy in explicit form, it is always expressed in relative and therefore this

T0 is some reference temperature. You can define any temperature as a reference temperature

as long as you are consistent and you use the same value of temperature everywhere. 

So it is M dot CP delta tee evaluated at Z, that is energy in by convection and therefore the

energy out by convection which is at this point would be simply was the same area twice pie

times delta R, this velocity which is VZ, the temperature difference which is T - T0, all these,

the entire thing is evaluated at Z + delta Z and we have Rho and CP. So twice pie R delta R

would be the mass flow rate, would be the volumetric flow rate multiplied with rho you get

the mass flow rate and then CP delta T. 

However this T - T0 is evaluated at Z + delta Z. This VZ is also evaluated, the velocity is also

evaluated at this point but from our study of fluid mechanics we understand that VZ is a

function of R only and VZ is not a function of Z. So if VZ is not a function of Z for fully

developed flow which we have assumed in order to obtain our expression for the velocity

profile, therefore this VZ can be taken out of this this sign and therefore your T - T0 which,

where the T is changing with Z as you move in this direction, the temperature will change. 
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So T is a function of Z but VZ is not a function of Z, so we can take the VZ out of this. And

T0 is just the datum temperature. So we add the all the 4 terms that we have, all the 4 terms

that is 4 terms for conduction in and out, and 2 terms for convection in and out. So when we

do that and express and divide both sides are twice pie R delta R, what we get is R QR



evaluated at R + delta R - R Q R at R divided by dell R. This is essentially the net addition of

heat by conduction +, this is the net addition of heat by conduction in the Z direction. 

And also we have the convective term VZ, this is T at Z + delta Z - T at Z divided by delta Z

is equal to 0. So this is the conduction in the R direction, net addition of heat by conduction

for heat flow in the R direction. This is net, this part is net addition of heat by conduction in

the Z direction and this is the amount of convective heat flow into this control volume by

convection. 
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So when the limit you take, when the limit you take delta R tends to 0, you convert this

difference equation into a differential equation and the differential equation would be rho CP

dell temperature by dell Z is equal to -1 by R dell dell R of R QR - dell QZ by dell Z. So the



right-hand side refers to the conductive heat flow, the left-hand side refers to the convective

heat flow. And when you put QR using Fourier’s law as -, these are all flux, so QR is dell T

dell R and QZ is equal to - K dell T dell Z, variation in temperature with R and variation in

temperature with Z. 

And we understand that in this system the temperature will be a function of Z as I move in

this direction the temperature will increase and the temperature will also be a function of R.

As I move closer to the wall, since the walls are heated, the temperature will be more. So T is

a function of Z and T is a function of both R and Z. So this is something we have to keep in

mind and therefore I write this equation, put the Fourier’s law, put the Fourier’s law in here. 

I am sorry I missed a VZ in here, this VZ should also come in here. So we put the equation of

qR and QZ on the right-hand side and for VZ, from our study of fluid mechanics we know

that VZ is equal to VZ Max times 1 - small r by capital R where capital R is the radius of the

tube. We plug this in from the Naviar Stokes equation, solution of Naviar Stokes equation,

then what you would obtain as the final form of the solution as rho CP V max which will

obviously be at the centre line. 

1 - small r by capital R whole square times dell T dell Z is equal to K times 1 by R dell dell R

of R dell T del R + dell 2 T by dell Z square. So this therefore now becomes my governing

equation.  And this  governing equation  will  have  to  be solved with appropriate  boundary

conditions which we will discuss later on. The point that I would like to make here is that

cannot to obtain this governing equation, we have to go through a complicated process of

finding out what is going to be my smaller dimension for the assumed shell. 

And since velocity, since the temperature is a function both of R and Z, therefore for this kind

of two-dimensional temperature variation, the formulation of the entire problem becomes (())

(20:05) magnitude more difficult than the case where the temperature is a function only of

one direction. So for a very simple geometry of flow through a tube when the tube walls are

heated, we see that we are having problems in visualising this shell and makes, we are we are

we have to ensure that we are putting the values correctly,  the expressions correctly and

finally we arrive at a solution, a complicated, arrive at a complicated governing equation

starting with the fundamentals. 

We are, we cannot expect to do this every time we come across a problem. So anytime we see

a two-dimensional or even a three-dimensional problem, if you have to go to this process,



then that is repetitive, that is unnecessary and there must be a more general method to solve

for  situations  like  this  which  would  necessitate  the  formulation,  the  development  of  a

generalised equation which can be used for any geometry steady on an steady and so on. 

So this is the background, this underscores the requirement of a generalised statement which I

am going to start now. And I will come back to this problem, I will come back to this problem

and show you that from the generalised equation of energy conservation in a system where

flow in and out, where, it is an open system where we allow the fluid to come in and leave.

So if we have that kind of a generally questions, it can very quickly be resolved to obtain the

governing questions like this which we have obtain after a long series of analysis, thinking

and so on. 
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So we start our next next assignment but I will come back to this equation, next assignment

where  we  are  going  to  derive  at  least  conceptually  the  equation  of  change  for  a  non-

isothermal system. So this is the keyword, it is a non-isothermal, non-isothermal system and

as before we assume a stationary volume of as I said before, so this is stationary with respect

to X, Y and Z. And fluid is allowed to come in and go out, so fluid in at X, Y and Z faces,

through X, Y and Z faces. 

And fluid out through faces at X + delta X, Y + delta Y and Z + delta Z. So this is, this is how

the fluids can come in and go out of this control volume. So if I write the equation, energy

equation, the total, the conservation of energy, if I write the conservation of energy, energy



for such a system, for such a system, then one can write as rate of accumulation of internal

and kinetic energy. 

So this is the rate of accumulation of energy and look that I not only have taken into account

into energy, I also, I am also going to consider the kinetic energy of the system. So this is the

total energy of the system and this is going to be equal to the algebraic sum of rate of internal

energy and kinetic energy in by convection - the rate of internal energy and kinetic energy out

by convection. 

So since we have a flow, then with the flow, some amount of internal energy and because of

the flow, the amount of kinetic energy is entering the control volume and also going out of

the control volume. So this is the net addition of internal and kinetic energy to the control

volume because of convection. Then I can do the same thing here for the conduction and in

the, in the case of conduction I am not breaking it into 2 parts, I am simply using the word net

which essentially tells me it is the difference between in and out. 

So the net rate of heat addition by conduction, this is by conduction. However there is an

extra term which we are putting in here is the net rate of work done by the system on the

surrounding. So let us see slowly what we have done. I am writing the energy conservation

equation, which simply says that the rate of in, energy in and by in I understand it is going to

be convection and it is going to be conduction - rate of energy out by convection and by

conduction, so these terms together, it is essentially the net rate of internal and kinetic energy

which has added to the control volume. 

And the  means,  the  mechanisms by  which  this  net  addition  is  going to  take  place  is  a

combination of both convection and conduction. So depending on the situation at hand, I can

have both present or I can have just one present in the system. So I can never stop conduction

if  there  is  a  temperature  difference,  so  therefore  it  is  going  to  be  either  conduction  +

convection or only conduction if you are talking about a solid system. So thus, if the if the

system does work, I am talking about the internal and kinetic energy, so if the system does

work or the work, work is done on the system by some agent in the surrounding, then its

internal energy or the total energy of the system will change. 

So if the system does work, then its energy gets reduced, if work is done on the system, its

energy will increase. So when we talk about the net, the rate of accumulation of energy, both

internal and kinetic energy, net, the rate of accumulation of energy inside the control volume,



it must be equal to the net rate of heat additions, energy, I should not say energy, heat, the net

rate of energy additions by means of conduction and convection and an additional term which

will tell us, which will give us the rate, the rate of work done by the system or on the system. 

If it is by the system, it will be negative, if it is on the system, it is going to be positive. So

this equation what you see over here is nothing but the 1st law of thermodynamics for an open

system. And when we talk about open system, that means we are allowing fluid to come in

and go out of this. So from this generalised energy equation we can they can subtract the

mechanical  energy equation and we can obtain the more commonly used thermal  energy

equation. 

So the equation that I have presented, that I have shown you is for the total energy, which

contains both the thermal energy part as well as the mechanical energy part. So from this

equation I am going to subtract the equation for mechanical energy and what I would obtain

out is a more commonly used equation of thermal energy. So the thermal energy balance

equation considering both conduction, convection as well as the work done which is nothing

but  the  1st law  of  thermodynamics  for  an  open  system is  something,  is  the  generalised

treatment of energy transfer in a system which should give rise to the equation that we are

looking after, a general equation for energy transfer. 

So this is the one which I am going to continue in the next class. And we will revert to the

problem of forced convection in a tube with constant heat flux. And we will see how quickly

one would be able  to obtain the governing equation by choosing the right  component  of

energy equation and cancelling the terms which are not relevant for the problem at hand, the

same way we have done for the Naviar Stokes equation. 


