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Lecture-33.
1-D Heat Conduction – Shell Heat Balance.

So as I mentioned I am going to continue with a system in which let us say we have an

electrical wire and some amount of heat is generated when current passes through it, it is a

simple, the due to the resistance, there will be some heat regeneration and let us assume that

this  heat  generation  can be  expressed,  can be termed as  S subscript  e  which is  the  heat

generated per unit volume. And we would like to find out from 1st principles what would be

the dissolution of temperature, the form of the temperature distribution inside such a wire. 

What we have seen for the case of plane wall, now we are going to do it for a cylindrical

system in which we consider the radial distribution of temperature. So what we assume is the

temperature varies only with r, it is not vary with Z or with Theta and that we are dealing with

a steady-state system, so on the, so heat in - heat out + heat generation or in terms of rates

must  be  equal  to  0.  Since  it  is  there  it  is  a  steady-state,  so  no  accumulation  of  heat,

accumulation or depletion of heat inside the control volume which is this case if the entire

wire. 

So the same way we have done for the case of shell momentum balance, here also I will have

to assume a shell of some thickness of some small dimension and write the corresponding

terms of in and out and generation if any and then equate them to at steady-state equal to 0.

So the algebraic sum of heat in, heat out and the heat generation must be equal to 0 at steady-

state. And the same way for the case that we have done for the case of momentum transfer,

the trick to choose the smaller dimension of the control volume is to realise which is the, in

which direction the temperature is changing. 
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So if you consider the problem at hand over here, temperature is obviously will change with

r, temperature will not be a function of Z and temperature is definitely not going to be a

function of Theta.  So since the temperature is changing with r,  my choice of the control

volume should be, should have a thickness which is, which we can call it as delta r. So on this

side also, so this is the shell, cylindrical shell which is coaxial with the axis of the electric

wire and we are talking about this shell. 

So if you think of this shell, the cylindrical shell, then I am going to have some amount of

heat which is coming in by conduction, the heat which is going out of the shell by conduction

and some amount of heat will be generated in this control volume because of the distributed

heat generation term which is heated generation per unit volume. So if we think QR is the

heat flux at r, some value of r, so this is Q r which is entering and QR + delta r, says the

thickness is delta r that is leaving this interface. 

So if this is heat flux at r, then the total amount of heat in would simply be equals twice pie r

times L, this is essentially the area of the inner surface of the assumed shell multiplied by Q r

evaluated at r, heat out would be twice pie r + delta r times L times Q r evaluated at r + delta

r. So look at the similarity of the shell momentum balance that we have done previously and

the heat generated would simply be equals the volume which is twice pie r delta times L. 

So this is essentially the volume of the control volume that we have chosen. So this has units

of cube, multiplied by Sc which is heat is generated per unit volume. So this is volume and

this is heat generated per unit volume and these are all rates heat, heat, the rates, these are



rates of heat coming in, rates of heat going out and rates of heat which are generated in here.

So what you do is you write this equation and in - out + generation is equal to 0 at steady-

state. 
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So we put these terms over here in - out + generation is equal to 0 and divide both sides by,

divide all sides by delta, cancel out pie, L, etc. and divide both sides by delta r. And when you

do  that  this  difference  in  question  would  slowly  would  definitely  be  converted  into  the

differential equation rQR is equal to Sc Times r. So this becomes the governing equation for

heat transfer when you have generation of heat inside a cylindrical system. 

So in - out + generation equals 0 divide cancel the terms, cancel 2 pie L, etc. and divide both

sides by delta r would simply give you the expression, the final expression to be as d dr of r



QR Times Sc r is equal to 0. This can be integrated to obtain S ER by 2 + C1 by r, where C1

is the constant of integration. Now we have to evaluate C1 and C2. As you can see the form

suggests that QR would be would, the QR cannot be finite when r is equal to 0. 

So at r equals 0, at this location QR has to be finite. So if qR has to be finite at our equal to 0,

then C1 has to be equal to 0. Since Q1 is finite at r equals 0, so C1 has to be equal to 0. So if

C1 is equal to 0, then what you would get his QR is equal to Se, the heat generated per unit

volume by 2 and substitute Fourier’s law which is QR equals - K dT d r in here and what you

would get is - K times dt dR is Sc r by 2 and you integrate it once to get - Sc r square by 4K +

C2. 

And the boundary condition 2 could be that at r equals Capital R that is the at the outer edge

of the electrical wire, the temperature is some known temperatures T0 and if you use this

boundary condition, then the temperature distribution would simply be equals Sc R square by

4K 1 - small r by Capital R the whole square. So what you see here then, what you see here, I

will point to this equation once again. 

The temperature distribution which is a function of r, T0 is the temperature at the, of the

outside  of  the  wire  is  a  parabolic  function  of  r  continuing  terms  such  as  the  thermal

conductivity of the solid wire and the heat generation per unit volume due to the passage of

current through it. So it is a parabolic distribution and with the maximum temperature, T max

would obviously be at a point where r equals 0 and T max would be equals T0 + SER square

by 4K. 
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So this would be the maximum temperature of the rise, temperature rise of the wire. And

additionally if you would, if you are interested not only in the temperature at every point at

some sort of an average temperature rise which is some sort  of an average and all these

averages are mostly area averages. So what I have to do is I have to find out the area average

of T which is a function of r - T0 Times r dR d Theta and this must be equal to the area, the

cross-sectional areas which is r dr d theta. 

So this is a standard method of expressing with the temperature rise or temperature, average

temperature,  the  same way  we  have  expressed  the,  the  average  velocity  when  I  have  a

parabolic distribution of velocity inside a pipe due to a result in less safe pressure difference,

apply pressure gradient at the liquid flows follows a parabolic velocity profile. Same way

when you have heat regenerated inside a wire, the temperature distribution will turn out to be

parabolic in nature. 

And we expressed the average velocity when we did the averaging of velocity, it was always

averaged over the flow cross-sectional area. So simply replace fluid flow by heat flow and the

temperature  is  therefore  averaged  over  the  average,  over  the  average  flow  area  that  is

perpendicular  to  the  direction  of  current  passage.  So you are,  you are  not  to  obtain  the

thermal, the temperature average, you are everything over the entire cross-sectional area. 

And for an electrical system, the entire cross-sectional area is going to be double integration,

one is from 0 to pie, the value of theta can vary from 0 to pie and the value of r, small r can

vary from 0 to Capital R and the area would be simply r dr d Theta. So when you do this r dr

d theta, in this specific form, you would see the result for this - T0 would simply be equal to

Sc r square by 8K. And the last part that remains is what is the heat flow at the surface, at the

outer surface? 

The heat flow at the outer surface, if I denote it as Q and r equals r, Capital R should be

equals the area which is twice Pi rL multiplied the heat flux evaluated at r equals Capital R.

Which when you do it, it would turn out to be pie r square L by Se. If you look carefully, pie r

square L is simply the volume of the control volume and Sc is the heat generated per unit

volume. So the heat flow at the outer surface, these 2 volumes will cancel, so the heat flow at

the surface must be equal to the heat regenerated. 

That is a condition which must be maintained in order to obtain, in order to reach the steady-

state. So at steady-state, all the heat which is generated inside the control volume must be



conducted  out  of  the  control  volume  and  that  is  the  result  which,  that  is  our  physical

understanding and you would see by plugging in our expression for T, expression for Q,

multiplying it with the volume and so on you get the exact same result. So our results are

consistent with our understanding, our physical understanding of the basic fundamentals of

the process. 

So this example essentially shows you how to start with the model, to start with, how to start

converting your understanding of the problem in terms of difference equation by the choice

of a shell across which you are going to make heat balance. And from that choice of your

shell,  you  would  be  able  to  derive  what  is  the  governing  equation.  Once  you  have  the

governing equation, use appropriate boundary conditions to get the temperature distribution.

The same way we have done for the velocity distribution. 

Once you have the temperature distribution you can find out what is the average temperature

by averaging it across the cross-sectional area of your control volume. And if you have the

average temperature, then the average temperature can be related to other parameters which

you would see later but this example establishes or re-establishes the ease with which one can

use a shell heat balance to obtain that temperature distribution inside a control volume. 

However  the  moment  we  have  this  is  true  for  the  case  of  conductive  heat  transfer,  the

moment we have convective heat transfer the system starts to get complicated and a simple

shell balance will probably turn out to be inadequate in addressing slightly more complicated

problems, so we will see them next. What I will like very quickly do is give you a problem to

practice on. 
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And the problem you are going to practice is, let us assume that you have again a plane wall

where one surface is maintained at T0, this surface is insulated, this is located at X equals to 0

and this is at X equals L. 

And it says that at exposed surface and by exposed surface I obviously mean at X equal to 0,

so  this  is  the  exposed  surface.  Its  thermal  conductivity  is  K is  subjected  to  microwave

radiation which causes heat generation inside the wall according to the function as Q, the heat

generation which is a function of X is equal Q0 which is a constant times 1 - X by L. And X

boundary  at  X  equals  L  is  insulated  and  boundary  at  X  equals  0  is  maintained  at  a

temperature equal to T0. 

The things that you have to find is derive equation for the temperature profile and 2nd is

obtain the temperature profile with appropriate boundary conditions. So once again we have a

wall, one side of it is insulated, the other side is exposed to microwave radiation. So you have

radiation falling on it and getting absorbed inside the whole material and the radiation causes

the heat generation inside the wall as QX equals Q0 which is a constant 1 - XYL. 

So as  X increases,  the amount  of heat  which is  generated gets smaller  and smaller.  The

boundary  at  X equals  L is  kept  at  insulated  condition  and the  boundary at  X is  at  0  is

maintained at a temperature equal to 0. So as before you can either think of a thin shell of

thickness delta X and do the balance or you can directly write, since it is a conduction only

case, you can directly write the governing equation Q by K to be equals 0. 



Put in the expressions, integrate, use the appropriate boundary conditions which I would not

discuss and what you would get is, the answer you should get is T - T0, that is temperature

which is a function of X, T0 which is a constant temperature, Q0, sorry this is Q0 by Twice K

times L square X by L -  X square by L square + 1/3 X cube by L cube.  So this  is  the

temperature profile which you should get. That is for this example problem, you can you can

use the appropriate boundary conditions, write the equations, solve it and this is going to be

one of your practice problems. 

Now we move onto something which you probably have done in your heat transfer, so I need

not spend too much time on it. The system of the heat conduction in a cylindrical systems is

slightly different than the heat conduction in the planar system. And it would give rise to

interesting  phenomena  where  you  would  see  that  in  most  of  the  cases  when  you  add

insulation to pie, the heat transfer from the pipe would reduce. So if you have a pipe which is

carrying steam as a few put an insulation around it, the total amount of heat transfer from the

pipe to the surrounding would increase, would decrease. 

If you increase the thickness of this insulation, that means you are adding more resistance to

the path of heat flow from the tube to the surrounding, therefore increase in the thickness of

the insulation increases the resistance and hence decreases the total amount of heat transfer

from the pipe. That is normally what would expect and that is what we generally see when we

add insulation to a cylindrical system, or cylindrical or to a spherical system. But there are

situations in which adding insulation may result in the decrease of resistance for heat transfer.

So if you if you are in that condition, that means adding an insulation reduces the amount of,

reduces  the thermal  resistance  and therefore enhances  the heat  transfer,  that  thickness  of

insulation is known as the critical insulation thickness. So there is a concept called critical

insulation  thickness,  if  you  are  beyond  that  critical  insulation  thickness,  adding  more

insulation on that system could follow the logically what we think should happen, that means

increasing the insulation decreases the heat transfer. 

But if your system size is below that critical thickness of insulation then and if you add more

insulation to it, then what you would expect is contrary to your expectation, that is you are

putting insulation but you are enhancing heat transfer. So I am sure this concept is probably

known to you but since it is such an interesting concept, so I will quickly show you how, how

this is possible and why it is possible only for cylindrical and spherical systems in which the

flow area changes with respect to the distance from the centre. 



For a plane system, the flow area, the heat flow area does not change as you move away from

the centre plane. But when you think of, think of a cylinder, if you increase the radius of the

cylinder, the flow area available for heat transfer increases. The same happens for the case of

sphere.  So  a  sphere  when  you  increase  the  size  of  the  sphere,  the  area  available  for

conductive flow of heat out of the sphere will increase. So the concept of critical thickness of

insulation can only be found in the in those situations, in those geometries where the area

increases with increase in its distance from the centre point or centreline. 
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So I will quickly show you how, what is critical thickness of insulation, where you have a

system, you have a pipe and an insulation around it. So this is, so this is an insulation around

it, let us assume that the radius, inner radius of this is r I and the temperature at this point, that

is over here is equals T I and let us see the radius of the installations is r0. So the total amount

of heat flow, total amount of heat flow from the system is simply the potential difference

which is T I  -  T infinity and divided by the resistance,  the conductive resistance of heat

transfer and it is in contact with a fluid with a value of H, with the value of heat transfer

coefficient, convective heat transfer coefficient H and the temperature as T infinity. 

So we are writing, we are drawing the circuit between TI, which is the inner temperature of

the insulation and this could be some temperature TO which is the outer temperature, outside

temperature of the insulation and this is T infinity. And some heat Q is flowing from the

inside to the outside. So Q is going to be equal to the cause, the cause, this is the effect, so

this is the cause, the temperature difference and the sum of resistance. And we know that for

cylindrical systems, it is simply going to be r0 by r I by twice pie KL and for convection it is



going to be 1 by HA, where H is the convective heat transfer coefficient and K is the area

available for convection. 

So  area  available  for  convection  is  simply  going  to  be  twice  pie  r0  times  L,  this  is  a

cylindrical system. So one can write it as twice pie L, T I - T infinity by LN r0 by r I by K, +1

by r0 H. In order to evaluate the radius of the insulation, which is r0, that would maximise

heat transfer, dQ by d r0 must be equal to 0, so this is maximise heat transfer with respect to

the thickness of insulation. So if you put dQ by d r 0 to be equal to 0, this, I will not do this

math, you can do it on your own, what you would see is r0 to be equal K by H. 

So r0 equals K by H is an interesting formula.  It simply tells  you that if  your radius of

insulation is less than this value of r0 given by K by H, then by putting more insulation you

increase your heat transfer. And this will keep on increasing till you reach r0. The moment

you reach r0, the heat transfer at that point from the cylindrical system is maximum. Beyond

r0, if you keep on adding insulation, the amount of heat transfer from the cylindrical system

will keep on decreasing, that is what we would normally expect. 

So your heat transfer starts to increase with r, so if I plot heat transfer on the Y axis and radius

of insulation on the X axis, you would see that it, the heat transfer would increase, reach a

point where it is maximum corresponding to r 0 which is equal to K by H and if you, since it

is maximum, if you go beyond that, the heat transfer would start to fall. So this r0 is known as

the critical thickness of insulation. 

Now  if  you  see  the  values  of  K  and  the  values  of  H,  you  would  normally,  in  normal

applications you do not come across the critical  insulation thickness because the thermal

conductivity of most of the common metals or common objects and the value of heat transfer

coefficient that is available to us are such that the value of r0, when a you have even a thin

layer of insulation on something, you are beyond that critical thickness of insulation. 

So add, in a steam pipe, you add insulation you reduce heat transfer. But there is only a few

example,  only  only  few  examples,  one  example  being  that  of  an  electrical  wire.  In  an

electrical wire, the combination of conductivity and the value of the heat transfer coefficient

is such that you will probably be within the limit of critical thickness and therefore by adding

an insulation and answers heat transfer from the electric wire. I will give you, put you give

you some of the numbers which would which would be easier for you to understand. 



So for the case of an electrical wire, for a typical insulation, for a typical insulation, thermal

conductivity is about 0.03 watts per metre Kelvin and the value of H for the case of air, heat

transfer of the air is about 10 watts per metre square Kelvin. So your rC would be equals K

by H to be equal to 0.003 metres. So mostly what you would get is rI is greater than r critical.

So r I is greater than our critical and therefore you do not encounter the fact, you do not

encounter the effect that by increasing the insulation thickness you are going to get you are

going to get enhanced heat transfer. 

But for some situations this is there and even though you would need the basic purpose of

insulation, providing insulation is to reduce heat transfer. So if you cannot do that, if you

enhance the heat transfer by adding insulation, then you are defeating the purpose of putting

the insulation in the 1st place. Fortunately as I said in almost all of the cases you do not

encounter this. But if you are really working with a very thin electrical wire and you put a

thin insulation, the combination would be such that by putting insulation you enhance heat

transfer, which is good for the case of electrical wires because electrical wires, when current

passing through it generates heat. 

Unless  you dissipate  that  heat,  if  you are  putting  an  insulation  on  top  of  it,  to  make  it

electrical insulation on top of it to, for safe handling of it, then what you would get, what you

would expect is that the heat transfer, the wire would get more heated, wire will get more hot

which you do not want. What we have then is it a thin insulation, enhance heat transfer and

let the wire operate at a safe temperature. So critical thickness for insulation may be desirable

at certain certain cases, certain very special cases. 

But mostly the fact we do not encounter because of the relative values of K and H in most of

the heat transfer systems and we will always operate beyond the critical insulation thickness

values. So what I would do in the next class is show you some more examples, some more

interesting examples of shell heat balance in a reactor. So if we have a catalyst field reactor

with a zone which is not where there are no catalysts, a zone where there is a catalyst and a

zone where again there is no catalyst, so if the reactant mixture succumbing preheated at

some point and then it encounters a catalyst and a reaction is going to take place. 

As we move along and reach the end of the reactor, when it goes out of it, then obviously the

reaction stops.  It  is  an exothermic reaction and we would like to see whether  having an

exothermic  or  endo  or  having  an  exothermic  or  endothermic  reaction  in  a  reactor,  in  a

catalytic reactor, how does that affect the temperature profile of the reacting gases as they



approach the reacting zone, inside the reacting zone and as they leave the reacting zone. So

that process from the fundamentals will try to model using the shell heat balance method that

we have adopted so far. 


