
Transport Phenomena.
Professor Sunando Dasgupta.

Department of Chemical Engineering.
Indian Institute of Technology, Kharagpur.

Lecture-26.
Turbulent Boundary Layers (continued).

So we are going to see based on our previous discussion how this one seventh power law can

be used in  turbulent  boundary layers in order to  obtain the expression for the growth of

turbulent boundary layer and we know the shortcomings of the one 7th power law. The major

shortcoming is that even though it is successful in expressing the data points near the Central

line, it does not meet the, it is not very successful in predicting the data close, in a region

close to that of the wall. 

More importantly the profile, the one 7th power law profile predicts an infinite shear stress at

the wall which is obviously not true. So when we think of using moment integral equation as

I mentioned there is the left-hand side which contains tao W and there is a right-hand side

which is essentially an integration of the profile or the moment integral thickness which is an

integration of the profile. As long as we have integration, we are integrating a moderately

successful expression for velocity the errors introduced are not significant. 

At the moment we differentiate the profile as would be the case to evaluate the expression of

the value for tao W, the errors would be, the errors would be significant and it simply cannot

be used. So we must think of other ways to express tao W in turbulent flow so that we can use

one 7th power law for the right-hand side of the expression but not on the left-hand side which

contains the wall shear stress. And the wall shear stress using one 7th power law is absolutely

not possible. 

So we would start with our boundary layers, boundary layer treatment in turbulent flow with

the with the, with the Naviar Stokes equation, Z component for a horizontal pipe and we

know, we have just derived in the previous class is that the pressure difference, how it is

related to the wall shear stress. The relation between the wall shear stress and the pressure

gradient for the case of flow in a horizontal pipe would be our starting point to evaluate the

left-hand side of the momentum integral equation which we are going to do now. 
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So the 1st thing that we have is the one 7th power law profile that we intend to use but we still

do not know how to use it on the left-hand side. So we start with the expression which we

have obtained before, the wall shear stress is equal to - N R which is the radius of the pipe by

2 dell P dell Z. And it has been defined, it is just a definition that P1, the upstream pressure -

P2 which is the downstream pressure, the difference in this pressure by rho is denoted, is

defined as delta P by rho and from our study of fluid mechanics, this delta P by rho is also

known as the head loss and commonly expressed as H. 

So for a horizontal pipe, this delta P by rho is simply going to be equal to H where H is the

head loss. We also understand that this head loss using the friction factor formula again from

the fundamental fluid mechanics, H is simply F L by d V square by 2 where V, sorry V bar

square by 2 where V bar is the average flow velocity. So we, one would then able to express

tao W, the wall shear stress as - R by 2 dp dZ - R by 2 dP dZ and then instead of dP, I am

going to bring in delta P to therefore since dell p is equal to P 2 - P1 and delta P is defined as

P1 - P2, so this becomes +, so it is delta P by L. 

And delta P is simply equal to rho H, so it is R by2 L times rho H. The expression of H can

now be substituted in here, so that is the arrow points to that, so the only unknown here is

what are we going to do about the friction factor. If you remember your fluid mechanics, the

Moody diagram and so on, the friction factor for a smooth pipe can be expressed in terms of

Blasius correlation, this is again I would request you to take a look at fundamental textbooks,

basic  textbooks  in  fluid  mechanics  which  deals  with  the  friction  factor  and  the  Blasius

correlation gives F, the friction factor in as a function of Reynolds number to the power 0.25. 



So my tao W now becomes equal to R by 2 L, instead of rho H, I bring in, bring in this f rho f

L by 2 V square by 2 and this is simply equal to 1 by 8 rho F V square and this expression for

F is substituted at this point and what we have then is tao W equals this. Now if, the beauty of

this is, if you if you carefully look at it, then the expression for tao W in this case does not

involve the gradient of a velocity, rather it expresses it in terms of velocity. 

So the problem of using the one 7th power law to evaluate tao W is taken care of, is somewhat

taken care of since we are not using the gradient of velocity but we are simply using velocity

by our incorporation of the head loss and by our incorporation of the Blasius correlation. So

now we are going to use one 7th power law, we understand that is  at  this  point that this

involves some approximation, we are introducing some errors into our analysis but as long as

we are aware of the point where errors can creep in and later on we can we can always go and

find out if this error is acceptable or not we, we are we should be fine, the alternative is

impossible. 

We have seen how difficult it is to use the analytical approach, the differential approach for

the simplest possible case of flow over a flat plate. And we have also seen the difficulties

associated with having and universal velocity profile, a semi-empirical approach was the best

thing  that  we could come up with  divides  the  flow region into  3 different  parts  viscous

sublayer, transition region and the turbulent course. And an universal velocity profile equally

valid in all these 3 subregions was simply not present. 

The other alternative is one 7th power law with its inherent limitations. So in order to evaluate

the left-hand side of the momentum integral equation tao W that contains a velocity gradient,

we know that we cannot use one 7th power law, so therefore we go to a head loss formula and

the concept of friction factor and the empirical expression of friction factor in turbulent flow

which is the Blaisus correlation, plug them all together and we get an expression for tao W in

terms of velocity or its square but not in terms of velocity gradient. 

So we at this point of time, we think that we have no other alternative but to use the one 7 th

power  law into  the  expression for  tao  W but  since  we are  using  the  one  7th power  law

expression, not its differential form, not its derivative, we are somewhat safe. But keep in

mind that this is one sorts of error that one approximation that we are making in using 17

power law in the expression of Tao W. 
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So we come to this point that the tao W is therefore the equal to this expression where once

you plug in the expression for F and if you use the power law profile,  you get the final

expression of Tao W as this is  where this capital  U is the centreline velocity,  this  is the

kinematic viscosity, this is the thickness of the boundary layer and now this expression of tao

W can be used as the left-hand side of the momentum integral equation. So we are safe with

this.  And  in  the  left-hand  side  and  the  right-hand  side,  I  can  I  can  directly  plug-in  the

expression for VX by U in the one 7th power law form. 
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So once I write it once again, the exact form would look something like this. The left-hand

side  which  we  have  obtained  previously  is  equal  to  d  del  dX,  the  ordinary  differential



equation 0 to 1, I am integrating over the entire floor area Eta which is the dimensionless

distance from the solid wall and 1 - Eta to the power one 7 th d Eta. So the MI equation for a

turbulent flow takes this form where I am integrating the one 7th power law and I have used

Blasius correlation to obtain the expression for tao W in this case. So once you perform the

integration, this would become 7 by 72, 72 d dell dX. 

You integrate it once, the ordinary differential equation and what you get is delta to the power

5 by 4 is 0.23 kinematic viscosity by the Central line velocity to the power one 4 th X + C. So

the problem still remains is how do you get the integration constant C. Remember previously

what we have done for the case of laminar flow is that at X equal to 0, delta is equal to 0.

This is the boundary condition that we have used for the case of laminar flow. But are we

justified in saying that X is, at X equal to 0 delta equal to 0? 

Because if you see what happens for flow over a 5, over over a plate when you have the

formation of, when you have the flow coming towards it, the boundary layer starts to grow, it

stays laminar and at certain point it starts to become turbulent and then it rises rapidly. So this

part  is  laminar,  this  part  is  turbulent.  So  therefore  the  governing  equation  that  we have

obtained is valid for this region. 

On this on this side I still have laminar flow, so I normally I would not be able to use this

boundary condition that at X equal to 0, delta equals 0, that means at the at the at the starting

point, the thickness of the boundary layer even for a turbulent flow is equal to 0, though we

know  that  the  turbulent  flow  starts  from  this  point  onwards  where  the  boundary  layer

thickness, there is the boundary layer thickness, delta is not equal to 0. So here, here in we are

introducing another approximation. 

The approximation that we are introducing is that at X equals 0, delta is equal to 0. So we

will  use  the  same condition  as  before  as  in  the  case  of  laminar  flow.  There  are  certain

situations in which the errors introduced by this assumption is not going to be significant. If

we  have  a  turbulent  flow  turbulence  promoter  placed  at  X  equals  0,  there  are  certain

situations in which it is better if we have turbulent flow from the very beginning, a quick

rapid growth of boundary layer. 

It is it is advisable to have this sort of a boundary layer and for those applications where

artificially we create localised turbulence at the point of 1st contact of the liquid with the solid

plate, the assumption that at X equal to 0, delta is 0 or in other words the flow, the boundary



layer  starts  as  a  turbulent  boundary  layer  is  somewhat  justified.  So  the,  it  is  still  an

assumption  and  it  still  introduces  some  error  but  it  creates  a  nice  compact  form and  it

precludes the requirement that you need to know what is the value of delta when the flow

starts, when the flow becomes turbulent. 

So  for  those  cases  in  which  you  have  turbulence  promoter  creating  localised  turbulent,

mimicking a situation close to that of turbulent flow from the very beginning, the use of X

equals 0, delta equals 0 is justified. But keep in mind that this is another source of error that

we are intentionally putting into our development inaudible to keep the final form simple to

use, okay. So we will still then use the condition, boundary condition that at X equals 0, delta

is equal to 0. 
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So when we do that the expression that you would get for delta, so this would give C to be

equal  to 0 and delta  would simply be equal  to  0.37 by REX to the power 1 by 5.  And

similarly he would be able to obtain what is skin friction coefficient defined as before as Tao

W by half rho U square which would be equal to 0.045 nu by U delta to the power one 4 th.

You can substitute the value of delta in here and therefore he would obtain the value of CS to

be equals 0.0577 by RE, Reynolds number to the power 1 by 5. 

So we have, now we have 2 expressions for the growth of boundary layer in turbulent flow

and the expression for CS, the friction factor in turbulent flow, so this this expression and this

expression. And the validaty of these 2 expressions are, for the Reynolds number which is

which is going, the validity would be, Reynolds number should be more than 5 into 10 to the



power 5 and less than 10 to the power 7.  The important point here is not only we have

obtained symbol 2 expressions quite easily using certain approximations which we are aware

of, the expressions for delta and CF. 

But the proof of the efficiency, the proof of the utility of these 2 expressions would be when

you compare them with the experimental data. Astonishingly the data and the prediction of

these 2 correlation, they are within 3 to 4 percent errors. So there is only 3 to 4 percent errors

when you use any of these expressions to predict either the thickness of the boundary layer in

turbulent flow or the skin friction coefficient in turbulent flow in the boundary, in the in the in

the developing flow inside the boundary layer when the conditions are turbulent. 

So with all these approximations, you are still able to fit the, still able to predict the results

within 3 percent of the, with 3 percent with 3 percent error only. That shows the utility of

momentum integral equations and even with all these approximations, the efficiency or the

importance of these 2 expressions in expressing turbulent flow, the growth of the boundary

layer and the friction coefficient. So that is the beauty of the approach that we have used so

far. 

One more point I would like you to appreciate is that delta here depends on REX Reynolds to

the power - 1 by 5 which currently identifies the rapid growth of boundary layer with X once

the flow becomes turbulent. So the figure that I have drawn over here as the growth of the

boundary layer, it is going to be very slow, gradual as long as the flow is laminar and then it

starts rapidly growing by the flow becomes turbulent. So turbulent boundary layer develops

more rapidly than the laminar boundary layer and the agreement with experimental results

shows the use of momentum integral equation as an effective method. 
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So these 2 are the take-home points from the exercise that we have done so far. So next what

I would do is I will I will try to show you the use of these concepts in the form of a problem

which we will solve, which I will I will solve and discuss with you. So the problem that I am

going to solve over here is essentially deals with a pipe like this, a duct which is a horizontal

duct, the intersection is well rounded, this is the Central line and the, at the entry point, the

velocity is 10 metre per second. 

There are 2 sections, section 1 and at some point downstream it is section 2, it is air which is

flowing, flowing into this and the rho, density of air is 1.23 KG per metre cube. The duct

height,  the height  of  the duct  which I  denote  by H is  equal  to  300 millimetre.  And the

conditions are such that the turbulent boundary layer starts to grow from the very beginning

itself. The flow is not fully developed and it can be assumed that the velocity profile in the

boundary layer which forms both from the top and from the bottom is given by Y by delta to

the power 1/7. 

The inlet flow is uniform at 10 metre per second at section 1, at section 2 the boundary layer

thickness on each of the wall of the channel, delta 2 is equal to 100 millimetres. So the duct

size is 300 millimetres but at section 2, the boundary layer thickness at, at the top and at the

bottom is equal to 100 millimetres. The 1st thing you have to do is show that for this flow

delta star, the displacement thickness is equal to delta by 8 and the 2nd part of the problem is

evaluate the static gauge pressure at 2. 



And 3rd is evaluate the wall shear stress, the average wall shear stress between 1 and 2, where

this length is equal to 5 metres. So you can see that the flow is going in outside over here we

just have the atmosphere present, so there 1st thing that we need to realise is that there must

be a suction present which pulls the air into the duct. So you have atmospheric pressure over

here, at this point the pressure must be lower than atmosphere, and as you move over here,

since the flow is taking place in this direction, this pressure is going to be lower than this

pressure and the gauge pressure here therefore is going to be is going to be negative. 
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Here is a gauge pressure is negative and at this point the gauge pressure is going to be more

negative. But let us 1st try to see how the 1st part can be done. The definition of delta star

when I do, do the 1st definition of delta star is simply 0 to delta 1 - small u by U Times dY, or

if you express it in dimensionless form, definitely going to be 1 - u by U Times d Eta. And

since 1/7 power law is provided over here, I can simply write it as delta 0 to 1, 1 - Eta 2 to the

power 1/7 d Eta and when you when you perform this integration, you should be able to see

that delta star would turn out to be equal to delta by 8. 

So the 1st part therefore is straightforward. But your you also have to keep in mind is that if I

would  like  to  find  out  what  is  the  pressure at  this  point,  I  am going to  use  Bernoulli’s

equation. And the Bernoulli’s equation can only be used if the Bernoulli’s equation can only

be used if the flow is inviscid in nature. But we have a situation here where there is a viscous

flow  taking  place  along  the  sides,  the  boundary  layer  is  growing.  So  the  concept  of

displacement thickness will play a critical role in this. 



Now if you refer back to our discussion of what is displacement thickness, it is the distance

by which the solid plate will have to be raised in an inviscid flow situation so as to get the

same  amount  of  reduction  in  mass  flow rate  which  is  there  due  to  the  presence  of  the

boundary layer. So if this problem is to be considered as an inviscid flow problem so that we

can use Bernoulli’s equation, we need to realise that at the entry point, the distance between

the 2 plates is equal to 300 millimetres or H. 

But at location 2, if I incorporate the concept of displacement thickness, the distance between

the 2 plates has to be reduced by delta farm delta star from the top and delta star from the

bottom. So to transform this problem into an inviscid flow problem, the entry, at the entry

point, the distance between the 2 plates and the area would be equal into 300 millimetres

multiplied by whatever be the width. Whereas at location 2, the distance between the 2 plates

is going to be H - 2 delta star where delta star is the displacement thickness multiplied by W. 

Only when we make this this change, we can use Bernoulli’s equation for a situation in which

we have frictional forces present and in which the flow is still developing. If you understand

this concept, then the rest of the problem is simple. So on one hand I have growing boundary

layer, viscous flow, the moment I use the boundary, the concept of displacement thickness, I

simply reduce the flow area by a distance equal to the displacement thickness twice because

boundary layer, about really grows from the top and from the bottom, so here is the floor area

is H times W, here the flow area is H - 2 delta star times W. 
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Only when we make this change, now I use Bernoulli’s equation between a point which is

outside of the duct, at the inlet of the duct and at location 2 of the duct. Okay. So with that

behind us, with that understood, we can then find what is going to be the, 1 st of all from the

continuity equation we can write V1 A1 which is equal to B1 times W into H, W is the width

which remains unchanged, constant. It should be equal to V2 times A2 and A2 now becomes

V2 times W and as I was explaining it must be equal to 2 delta star, this is the displacement

thickness. 

So your V2 must be equal to V1 times H by H - 2 delta star, 2 delta 2 star and your V1 is 10

metre per second, H is 300 millimetres and your boundary layer disturbance thickness is delta

by 8, so it should be 25 millimetres. This is going to be 10.9 metre per second. So at the entry

point the velocity is 10 metre per second, at the location 2, it is going to be 10.9 metre per

second, when we, since the flow area has now been reduced, the flow area has now been

reduced by this amount. 

So if the flow area has been reduced, the velocity has to increase. So if you use Bernoulli’s

equation now, then for a point outside where it is P0, the atmospheric pressure and since the

flow is in the in the gain in over here, there is no velocity, it is still a must be a, so V0 would

be 0, this is going to be P by rho + V square by 2. So the gauge pressure at location P1 would

simply be P1 - P0 from this which would be equal to - half rho V1 square and p2 G would

simply be - half rho V2 square, where we know the value of V1 and the value of and the

value of V2. 

So when you put in these values, this P1G should be should come out to be - 61.5 Pascals and

P2 would  be  equal  to  -73.1  pascals.  So  this  use  of  the,  precondition  for  the  use  of  the

Bernoulli’s equation is that we must transform this viscous flow to an inviscid flow problem.

And I can change viscous flow to inviscid flow only when we use the concept of, concept of

displacement thickness. The moment we use the concept of displacement thickness, the area

available for flow has now reduced by the, by an amount equal to twice delta 2 star from the

top and the bottom. 

And since the flow area is reduced, the velocity has to increase. So we calculate what is the

velocity at these 2 points. And outside of the duct, the air is still with no velocity, the pressure

is 1 atmosphere. So using Bernoulli’s equation once between the outside air and at location 1

we calculate what is the gauge pressure at location 1 since we know the velocity. And then we



use Bernoulli’s equation for the outside atmosphere and location 2 where we know what is

the velocity, the increased value of velocity. 

And there we would see the gauge pressure would be something negative at 1 and even more

negative at 2 each essentially drives the fluid from location 1 to location 2. So this is a nice

example of the use of displacement thickness. And in the next class since I would quickly go

through the solution of the 3rd part of the problem which essentially tells us to find out what is

the average shear stress for this condition between location 1 and 2, which I will take up in

the next class. 


