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So let  us  start  with  turbulent  flow in  this  class.  Before  we  start  the  turbulent  flow,  the

treatment of turbulent flow, which as I mentioned before is quite complicated, I would start

with something very simple. Let us think of fully developed flow in a horizontal pipe. So

whenever you have flow in a horizontal pipe and if we consider steady-state and since it is

horizontal, there is no effect of body forces. So what it, the flow only takes place as a result

of applied pressure gradient, so if you apply pressure the fluid starts to flow.  

But when it attends a steady-state condition, that means the velocity at any specific location is

not a function of time, then this pressure gradient must be balanced by an opposing force.

And the opposing force is provided by the fraction of the fluid. So if one writes the Naviar

Stokes equation, the Z component, the axial component of the Naviar Stokes equation in a

cylindrical coordinate system for steady flow, steady fully developed flow in a horizontal

pipe, the form of that equation would look something like this.  
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Where the all the convective terms are going to be 0, this is Dell P Delta Z with a - sign. And

since  it  is  cylindrical  system,  this  denotes  the viscous forces  acting on it.  So this  is  the

gradient of pressure, the pressure gradient which is forcing the fluid to flow and this is the

shear stress which is opposing the motion of the fluid. So at steady-state fully developed



condition,  fully  developed condition,  this  would be the equation for the Z component  of

equation of motion.  

So one would be able to integrate this equation and to obtain concert of integration as C. And

we all know that at R equal to 0, that at the Central line, the shear stress must be equal to 0.

So if the shear stress is 0 at the Central line, that is at r equal to 0, Central line of the pipe, at

R equal to 0, which should give us the integration constant to be equal to 0. So the expression

for  shear  stress  in  a  flowing fluid would simply be equal  to  r  by2 where r  is  the radial

distance coordinate and Dell P Delta Z is the pressure gradient in the, which is forcing the

liquid to move  from lower values of Z towards higher values of Z.  

This is the shear stress on the fluid, so when I express it in terms of the wall shear stress, that

is the force experienced by the solid wall in contact with the fluid, then tao W would be

simply equal to - Tao RZ but the location here is that the wall at which point is the r is going

to be equal to capital R Where capital R is the radius of the pipe. So substituting the value of

R in here, one can obtain the wall shear stress to be equal to - R by2 Dell P Delta Z. So this is

valid both for laminar and turbulent flow.  
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We will use this later on  in our discussion. But let us come to this part of the turbulent flow.

What I have drawn over here is the instantaneous velocity which is denoted by VZ. So this is

the axial value of velocity at any given location as a function of time. So  far in laminar flow

we used to get only one value of velocity, that is the velocity is a constant and therefore it

will  not  fluctuate.  But in  turbulent flow whether  is  going to be a  lot  of intermixing,  the



exchange  of  Eddies,  the  formation  and  exchange  of  Eddies  and  so  on  and  if  you  are

measuring the velocity of the fluid at a given point, the velocity is never going to be constant.

It will be an arbitrary oscillating function of time. So at one point instant of time the velocity

could be high and the next instant it could be low, set would arbitrarily oscillate as a function

of  time.  Now if  you integrate  this  over  entire  time,  if  you find the time average of  this

velocity where the averaging is done over a timescale which is large enough in comprising do

they timescale of the selection, so if it is oscillating like this, you are averaging over a large

time.  And  therefore  the  value  you  does  obtain  the  would  be  a  constant,  it  would  be

independent of oscillation and this is called the time smoothed velocity.  

So if you can integrate the fluctuating velocity over a large time domain, then the constant

value that we are going to get out of it is known as the time smoothed velocity. So that is the

1st difference  between  laminar  flow  and  turbulent  flow.  In  laminar  flow  the  velocity  is

constant but in turbulent flow the velocity can fluctuate. So the instantaneous value measured

at  different  different  points  of  time could  have  different  value.  So it  is  better  always to

express a time smoothed velocity rather than the instantaneous velocity.  

So what I  have drawn over here,  this  V that  denoted by the black line is  the oscillating

velocity whereas if you take a times smooth average, then the red line that I have drawn and

denoted by V bar Z is the time smoothed velocity. So one can express the instantaneous

velocity as the sum of time smoothed velocity and then a fluctuating component, whatever be

this  fluctuating  component.  The fluctuating  component  can  be  a  positive,  the  fluctuating

component can be negative.  

So the instantaneous velocity is a, is a function of time smoothed velocity and the fluctuating

component of the velocity. Now if you look at the fluctuating component of the velocity and

if you decide to take a time average of the fluctuating component, then you can clearly see

that this would be equal to 0. That means that fluctuating component when you take the

average over a large time domain, that the fluctuating component will be 0, however V prime

Z square if you take the time average of this, this is not going to be equal to 0. Okay.  

In fact the fraction VZ square times smooth, the square root of this divided by the, divided by

VZ is known, it is it is essentially a measure of turbulence. So the  points which I am making

over here is that they instantaneous velocity is the sum of the time smoothed velocity and the

fluctuating component of velocity. The fluctuating component of velocity, since it can be and



negative, it can vary both it can become both positive or negative, so if you allow, if you if

you find out the time smooth over a large, over a large time domain, then V prime Z would be

equal to 0.  

But V prime Z square, if you take the time Smoothing of that will not be equal to 0. So

sometimes  the  measure  of  turbulence  is  expressed  as  the  square  root  of  time  smoothed

velocity square divided by the velocity, divided by the time smoothed velocity and this is

known as the measure of turbulence. But again the point here is that the velocity fluctuates,

the fluctuating part when you take the time smooth is equal to 0 but the square of that is not

going to be equal to 0.  
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So now we move on to the Naviar Stokes equation, the equation of motion where all the

velocities are expressed in terms of a time smoothed velocity and a fluctuating velocity. This

is written for the X component of Naviar Stokes equation. Similar to velocity when we come

to the pressure term, the pressure will also be in turbulent flow, the pressure will also have a

time smooth component and a fluctuating component. So the 2nd the  other terms are going to

be Dell Dell X of rho VX times VX, like before but the velocities are now expressed as the

sum of time smooth and fluctuating.  

Similarly for VY time smooth fluctuating, this is the same for Z also I can have the sum of

time smooth and fluctuating and the shear stress term will also have a time smooth and a

fluctuating and I have the normal body force. So there is nothing difference, nothing unusual

about this equation except all velocity terms and the pressure terms are expressed as a sum of



the time smooth component and a fluctuating component. The same equation can, the similar

type of equation can also be written for the equation of continuity.  

What  we do this  at  this  point  is  we take a  time Smoothing of  the  entire  Naviar  Stokes

equation. So if you take the time Smoothing of this equation, then obviously this term would

disappear, this term would disappear, wherever I have V prime X alone, it will disappear at

here you would see you have V prime X square, it will not, if you are, the time Smoothing of

that would not be 0. And here for example you are going to have V prime X, V prime Y and if

you take the time Smoothing of that, it is not going to be equal to 0.  

Whereas individually V prime X would be 0, time Smoothing of that, V prime Y, if you take

the time, time average of this, it would be equal to 0. But the product of these 2, when you

take the time average of this, they may not be equal to 0. So when you take the time average

of  the  entire  equation  considering  the  facts  that  the  products  are  not  be  equal  to  0  but

individually they are 0, then some of these terms will drop out but some of these terms will

remain as additional terms into the Naviar Stokes equation.  

And most  of  the  additional  transport,  additional  transport  of  momentum that  one  would

encounter in turbulent flow  appears as a result of these fluctuating components of velocities.

These fluctuations are characterised by the formation of eddies and therefore these fluctuating

components would give rise to additional stresses which are not quick are not visible, which

are not important for the case of laminar flow whereas we have a velocity which remains

constant overtime but in turbulent flow it keeps on changing.  
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So the products of these fluctuating components denote additional transport of momentum

unlike in laminar flow. So these are, these explain the  presence of these terms explains why

the transport of momentum is more in the case of turbulent flow as compared to laminar flow.

So when you take the time smooth of this equation, what you get is as I mentioned, the left-

hand side would simply be this term, the pressure term would only have the time Smoothing

term and these 3 terms, they are identical with the question that you would get in turbulent, in

laminar flow.  

This term is identical that you would get in laminar flow, the GX term, GX, the body force

term would also be identical as in laminar flow, however these 3 additional terms appear

automatically in Naviar Stokes equation which are products of the fluctuating components.

Remember I am writing for the X component, so therefore V prime X appears in all 3, the

time smoothing of the product of these fluctuating components will not be 0 and collectively

they are referred to as Reynolds stresses.  

And  the  Reynolds  stresses,  they  are  responsible  for  the  transport,  additional  transport,

turbulent transport of momentum over and above that one would expect in the case of laminar

flow. So up to this part, there is, this is the laminar flow equation and the 3 terms known as

the Reynolds stresses, they essentially refer to the Reynolds, the Reynolds stresses or the

additional transport terms. So the next question is, we understand that in the case of laminar

flow of, flow of liquid through a pipe, we get a velocity profile.  

We know that the velocity profile is parabolic in nature with a maximum in the velocity at the

centre line. We also have an idea of how would the velocity vary inside the boundary layer in

laminar  flow. But can there be an Universal velocity profile  which would explain which

would tell us about how the velocity varies  in the case of turbulent flow. Unfortunately there

is no, till today there is no such universal velocity profile which are going, which can be used

from the very from a point very close to the solid surface all the way up to the centreline of

flow when the flow is taking place in a pipe.  

Rather it is customary to express velocity profiles in 3 distinct layers depending on which

forces and which mechanism is important in those 3 layers. So if you think of the layer which

is very close to the solid surface, very close to the solid surface, the effects of viscosity are

important.  So this  region where the effect  of  viscous forces  are  important,  this  region is

termed as the viscous sublayer.   



So in the viscous sublayer, the viscous forces are important, whereas if you go towards the

core of the pipe, in that zone which is far  from the far from the pipe wall,  the effect of

viscosity would be negligible and most of the momentum transport is going to be governed

by the formation exchange and transport of eddies. So the momentum transport in the core

region is controlled by the formation of eddies. So that is the turbulent core region.  

So we have a turbulent core region and a viscous sublayer very close to the wall. And in

between the 2, in between the viscous sublayer and the turbulent core, there exists another

hypothetical layer which is known as  which is known the transition region and in this region

both the viscous forces and the eddies, the turbulent transport of momentum, both are going

to be important. So in a turbulent flow field, the velocity  the region the  flow region, the

region, 3 regions, distinct regions are introduced the viscous sublayer, the transition region

and the turbulent core.  

And we have expression for velocity in turbulent, in in the viscous sublayer, in the transition

region and in the turbulent core, 3 distinct expressions of velocity, unlike in laminar flow

where  we  just  have  one  expression  for  velocity  for  the  entire  flow  field.  So  turbulent,

turbulent velocity profile is much more complicated than that of the laminar velocity profile.

Additionally the expressions for velocity in turbulent flow, be it in viscous sublayer or in

turbulent core, they are, they are obtained using a semi-empirical approach.  

So the constant, the expressions are provided in the text, in the literature, these expressions

are essentially averages of a huge amount of experimental data points. Okay. So these are

semi-empirical in nature and they essentially denote, they essentially show, they essentially

provide,  denote  averages  over  a  large  amount  of  experimental  data  and their  Genesis  is

however semiempirical in nature. The 3 the points to remember are for 3 distinct regions we

get 3 velocity profiles.  

The velocity profiles are obtained is in a semi-empirical approach. And the demarcation of

these 3 regions are also a result of experimental observations. So I would simply provide you

with the 3 velocity profiles, just for the sake of completeness and to show how complicated

turbulent velocity turbulent flow is even for the case of flow in a pipe and I will give you the 



expressions for the velocity profile in those 3 regions.  
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The 1st is the turbulent velocity, 1st is the viscous sublayer where VZ + the velocity, axial

component of velocity in dimensionless form, where this is VZ by V Star, this is the time

smoothed velocity is equal to Y V Star by mu, the kinematic viscosity. And this V Star is

essentially root over tao W by rho, root over tao W by rho has the same unit  as that of

velocity, so this is used to nondimensionalize velocity and it is called the frictional velocity.

And Y V Star by mu, again it is the non-dimensionless distance from the wall so it is denoted

by Y +.  

So for viscous sublayer where the viscous forces are important, the velocity profile would

simply be equal to VZ + which is by definition the time smooth axial velocity divided by

frictional velocity, this is the definition of racial velocity is equal to a nondimensional,  Uhh

is equal to a dimensionless distance from a solid wall defined as Y distance from the wall, V

Star, the frictional velocity and the kinematic viscosity and this is, this is expressed as Y +.  



(Refer Slide Time: 22:29)

So VZ + equal to Y + and this gives valid, the extent of the viscous sublayer is denoted by

this.  So  this  is  the  expression  for  velocity  in  viscous  sublayer.  In  transition  region,  the

proposed profile is VZ by V Star, frictional velocity again, that means which is equal to VZ +

is 2.5 ln YV Star by mu + 5.0 where the reason of applicability is 5, this. So this expression

which is obtained semiempirically and the constants essentially denote the are derived from a

large experimental dataset.  

So their average is over many experiments and for the turbulent core, the expression is VZ +

is equal to 1 by 0.36 ln Y + + 3.8, where Y + is greater than equal to 26. So in other words,

there is nothing called a universal  velocity profile in turbulent flow. Okay, people have tried

different means, different statistical techniques to obtain an expression for velocity profile in

turbulent flow.  

However the most common accepted way of treating turbulent velocity profile is to use 3

different zones and 3 different expressions for velocity that are obtained semiempirically and

the constants are essentially averages over a huge quantity of experimental data which are

obtained, so viscous sublayer, transition and the turbulent core. And you are obviously can

sense how difficult  it  is  to  express everything in  terms of  a  universal  velocity  profile  in

turbulent flow.  

So there is no such, there is, it is so difficult to use a universal velocity profile. However,

there is a velocity profile entirely empirical in nature which is known as the one 7th power

law that has been very successful in expressing the experimental results over a large domain



of distance from the solid wall. So here we have an expression of velocity as a function of

distance from the solid wall which is expressed, it is totally empirical in nature. But for some

reason this empirical velocity profile has been proven to be very successful in expressing the

velocities, in velocities over a large value of Reynolds number and this is known as the one

7th power law profile which are going to show now.  
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The power law profile, the power law equation simply tells that VZ by U is equal to Y by R

to the power one 7th where Y, U is the centreline velocity, the R is the radius, the Y is the

distance from the pipe wall.  The region of applicability  of this  equation is,  if  Reynolds,

Reynolds  number is  within  the range of  10 to  the  power  4 to  10 to  the  power 5.  So if

Reynolds number is in this zone, it  is entirely empirical in nature, so this is empirical in

nature, so this would give us, this will give us a profile V Z by U to be Y by R to the power

one 7th, this is also known as the one 7th power law profile.  

And if you find out the average velocity, if you integrate it and you find the average velocity,

this is 2N square by N +1 by 2N +1 where N in this case we have taken it to be equal to one

7th, so for N equal to 1 by 7, then V bar by U is equal to 0.8. Compare this with the case of

laminar flow where this constant is equal to 0.5. So compared to Uhh compared to a linear

velocity, laminar velocity profile, the profile in turbulent flow is going to be flatter near the

centre.  

So for the case of laminar flow the velocity profile is parabolic in nature and for the case of

turbulent flow it is going to be flat at the Centre. Higher the value of Reynolds number, the



more turbulent it is, the length of this flat region, relatively flat region where the velocity

profile is not a function of R will keep on increasing. So in the extreme limit when you have a

very highly turbulent flow at the entire pipe can also can  approach a velocity profile which is

flat.  

Okay so you are you are going to go from a plugged flow in the case of a laminar, sorry

parabolic velocity distribution in the case of laminar flow to almost like a plugged flow in the

case  of  highly  turbulent  flow.  So  this  expression,  the  one  7th power  law  is   extremely

successful in fitting experimental data with relatively high accuracy, however there is one

catch. The catch in this is that the one 7th power law profile can fit the data points of the

velocity very well when the distance from the solid wall or it the solid wall is slightly higher.
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In other words, this profile fails when you approach solid wall. So the one 7th power law

though  successful  in  expressing  in   expressing  the  velocity  Uhh  within,  with  sufficient

accuracy, it cannot track the profile when you approach the solid wall. In fact when the value

of Y by R, that is the distance from the solid wall nondimensionalized by the radius is less

than 0.04, it gives and you can work it out infinite velocity gradient at the wall, which is not

possible.  You  cannot  have  an  infinite  velocity  profile  at  the  wall,  so  the,  at  region  of

applicability of this one 7th power law equation is definitely not in, not near the wall.  

So  therefore  one  must  reemphasise  that  although  the  profile  fits  the  data  close  to  the

centreline, it fails to give a 0 slope at the centreline, that is the 1 st, 1st problem and the 2nd

problem is that it gives Uhh an infinite velocity gradient at the wall. So infinite gradient at the



wall  and does  not  give  0 slope at  the centreline.  Of these 2,  this  is  going to  create  the

maximum problem if we try to use this expression for the wall,  for the use of the, for the use

of the momentum integral equation.  

Because the momentum integral equation if you recollect is simply Tao W by rho is equal to

U square D Del DX and then over here, integration of u by U1 - u by U times T Eta, Eta

varies from 0 to 1. So if you take the simplest possible form of the work, the moment the

work, momentum integral equation, on the left-hand side I have Tao W, on the right-hand side

I have a velocity profile and yet I have a very handy power law equation which can be used

here in order to express it as u by U equal to Eta to the power one by 1 by 7 or I can express

it, I can plug it in here in order to obtain the expression for tao W.    

If you look at these 2 sides, it becomes apparent that you may be able to use one 7 th power

law on the  right-hand side  since  you are  integrating  the  expression over  the  entire  flow

region, that is you are integrating from 0 to, 0 to 1 over d Eta. So whenever we integrate an

expression that contains some experimental error, the error gets minimised,  the error gets

reduced. But what happens in Tao W, in Tao W you are to express Tao W in terms of velocity

gradient.  

That means you are differentiating the velocity profile,  the moment you differentiate the,

differentiate a data containing error, you magnify the error. So power law equation since it

fails near, it fails and it gives infinite velocity gradient at the wall and the velocity gradient at

the wall is connected with the shear stress at the wall, so, power law equation in this form

cannot be used with now, the left-hand side of the comment integral equation where were we

have Tao W.  

On the other hand the right-hand side essentially denotes an integration over the velocity

profile, so power law, one 7th power law is an ideal candidate to be used on the right-hand

side of the momentum integral equation.  So when we try to plug in a universal velocity

profile on the left-hand side of the momentum integral equation, the problem we see is that

there is no such thing as an universal velocity profile. At the best we have 3 velocity profiles

in 3 regions, which makes it difficult, cumbersome to be used with the momentum integral

equation.  

And the whole purpose of momentum integral equation is to simplify the entire process, so it

cannot use those 3 profiles. Now we have a one 7 th power law profile which fits the data



rather well near the centreline but it does not do it so good a job  near the pipe wall. So we

can use it on the right-hand side  of the momentum integral equation when we integrate the

profile. The left-hand side of the momentum integral equation contains wall shear stress and

wall shear stress is generally expressed in terms of velocity gradient at Y equals 0.  

And we know that one 7th power law fails miserably when Y approaches 0. It predicts an

infinite gradient which is impossible, which is physically indefensible and therefore one 7th

power law cannot be directly used to evaluate the wall shear stress and therefore the left-hand

side of the momentum integral equation. So in order to use momentum integral equation for

turbulent flow, we will use one 7th power law for the right-hand side but we cannot use one 7th

power law for the left-hand side and we have to devise something else. So that is what we

would  discuss in the next class.  


