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Just a quick recap of what we have done in previous classes. We started with the microscopic

balance in which the extensive property of the system, how would that change inside the control

volume as a result of unsteady state effect and as a result of convective motion of fluid coming

into the control volume. 
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Based on that we have started with an equation which looks something like this that for a control

volume,  this  is  the  expression  with  which  which  was  the  starting  point  of  all  our  previous

discussions where the DNDT is the total rate of change of an arbitrary extensive property of the

system. The 2nd term is the time rate of change of the extensive property n. It could be anything

within the control volume.

And the corresponding intensive property is Eeta. So Eeta is nothing but N by M where M is the

mass.  So Eeta  is  the  intensive  property  corresponding to  the  extensive  property  denoted  by

capital N. And the last term, this term on the right-hand side, gives us the net rate of eflux that is

the algebraic sum of inflow and outflow of the extensive property N through the control surfaces.



So with this equation we we took this N in the 1 st case to be the mass of the system and if N is

the mass of the system, then obviously the corresponding intensive property would simply be

equal to 1.
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And the equation which we have obtained out of that is nothing but the is is nothing but the for

for the for this case what we get is the conservation of mass, equation of conservation of mass or

the integral form of the continuity equation. In the 2nd 2nd part, we take the extensive property to

be equal to momentum such that capital N is now the momentum. So therefore the corresponding

intensive property would simply be equal to the velocity of the velocity of the control volume. 

So if N is equal to P where P denotes the momentum, therefore the corresponding intensive

property would be V and the DNDT which now becomes equal to DPDT would simply be the

time rate of change of momentum which is nothing but the force acting on the system. So here

also, instead of Eeta, the we we are going to put V the velocity and therefore the this is going to

be our steady-state term and this is the net eflux of momentum through the control surfaces

inside into the control volume. 

So  DNDT system is  when  the  limiting  condition  when  the  system and  the  control  volume

coincide and in that case, DNDT would simply refer to the forces acting on the control volume. 
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So when we have forces acting on the control volume, the relation that they have opted is the

force acting on the control volume is  equal to the time rate of change of momentum of the

control volume and the net momentum eflux into the control volume. And forces are identified as

either  the surface force  or  the  body force.  The common examples  of  surface  forces  are  the

pressure and shear wherever an example of body force could be the gravity force in acting in the

system.

So this equation is the, is known as the momentum equation or rather the integral form of the

equation of motion.  The points to note here are that  that  all  low 50s that we refer  here are

measured  relative  to  the  control  volume and by convention,  mass  in  is  always  taken  to  be

negative because of the dot product of the velocity and the area vector where the area vector is

always directed perpendicular to or towards perpendicular to the surface.And mass out would

would be would be positive. 
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Starting  with  this  and  some  more  simplifications  we  have  ultimately  obtained  an  ordinary

differential equation and where U is the free stream velocity, theta is the momentum thickness

that we have earlier derived to be equal to this. And Del star is the is the thickness more is the is

the displacement thickness which is of data previously in this form. So the duty of this equation

is that 1st of all it is an ODE and it does not say anything about Tao W, the nature of Tao W. So

whether it is laminar flow or turbulent flow. 

So therefore this equation the momentum integral equation in its present form is equally valid

both for turbulent flow and for laminar flow. And since we have the variation of the free stream

velocity incorporated into the equation, therefore this equation is also valid for cases in which the

it is a curved surface such that free stream velocity is also a function of the axial position. So this

is a very general equation and we have seen the use of this equation in in solving some of the

problems that we have we have done before.
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And the final final form for the case of flow over a flat  plate that we have obtained in the

previous class where delta by X, the growth of the boundary layer as a function of axial position

and as a function of other parameters including the impose condition of the approach velocity

which is embedded into Reynolds number and the properties of the fluids also incorporated into

the Reynolds number, they are of this form. 

If you recollect the exact solution for flow over a flat plate which is the exact solution which is

also  known  as  the  Blasius  solution,  the  form  of  the  equation  was  exactly  the  same,  only

difference is the variation in the value of the constant. In the case of exact solution, it was 5

whereas in the case of the momentum integral equation, it was 5.48. Similarly we have defined

what is the shear stress coefficient defined as Tao W divided by half to U Square where U is the

free stream velocity. 

So we following this and incorporating the the expression of Delta from here, we have obtained

the expression for the sheer stress coefficient to be equals 0.73 by REX and our result from the

right solution of Blasius was the same form. Only difference is in the value of the constant. So

we are getting within we can predict the growth of the boundary layer within an accuracy of + or

- 10% in comparison with the Blasius solution.



And similarly, the coefficient of friction, the friction coefficient is also very close to the fiction

coefficient obtained from the exact analytical solution. Now considering the problems which one

encounters in solving a partial differential equation even for the simplest possible case of flow

over a flat plate, the approach of momentum integral equation is therefore this quite helpful. 

And we would see later on that since this equation takes into account the possibility of having

turbulence was not in the system, the range of applicability of this equation is much more and it

is quite easy to handle in comparison to the exact analytical method. So what additionally we

have done is that we we we have we are going to we have seen how to how to assume a possible

velocity profile inside a boundary layer for the case of laminar flow.

And they were expressed for example in the previous problem as a polynomial A + B Eeta + C

Eeta Square where Eeta is the dimensionless distance from the wall defined as Y by delta where

Y is the distance from the wall and delta is the local value of the boundary layer thickness. So if

VX by U velocity inside the boundary layer divided by the free stream velocity. 

So that is the dimensionless velocity defined as VX by U if it is expressed as capital A + B Eeta

+ C Eeta Square then you then using the boundary conditions, the relevant boundary conditions

and the relevant boundary conditions are, no slip at the solid liquid interface that means VX by U

is 0 when Eeta is 0, secondly velocity approaches the asymptotically velocity approaches the free

stream velocity at the edge of the boundary layer and at the edge of the boundary layer, Eeta is

simply equal to 1 since Y is equal to delta. 

So at Eeta equals to 1, that means at the edge of the boundary layer, the value of, dimensionless

value of the velocity would be equal to 0 and also, the gradient of the velocity at that point, that

is at Eeta equals to 1, would also be equal to 0 since the velocity approaches the free stream

velocity asymptotically. So using these conditions, we were we were successful in evaluating the

values of A, B and C, the constants A, B and C. 

And  we  have  obtained  an  expression  for  the  velocity.  The  expression  for  velocity  when

substituted in the momentum integral equation, give us the results that I will I have just described

that is the and we could compare, we could benchmark the utility, the accuracy of momentum



integral equation by comparing it with the results which are which were analytically obtained

and we compare the expression of Delta and we compared the extortions of CF.

In both cases, they come out to be very close to each other. The reason for that is since boundary

layer is extremely thin, and if we could correctly identify what would be the boundary conditions

at the solid liquid interface, and at the edge of the gondolier, then what happens in between is

probably going to have very small effect on the overall growth pattern of the boundary layer and

the value of the fiction coefficient. 

So this is the reason why momentum integral equation is successful in in providing an expression

correct expression for delta and for correct expression for CF. So these are reasonably accurate,

within 10 percent accuracy considering the amount of the amount of the less amount of effort

that we have to we have to provide, we have to, we have to sub, we have to do in in terms of

getting the solution, this is a welcome change.

So from now onwards, we will restrict ourselves to the solution of boundary layer phenomena

using momentum integral equation. Before I move onto the treatment of the turbulent boundary

layer which was not possible using any analytic method, we would in this class we would 1 st

solve, try to see how to fall one more problem where the profile of the boundary layer, the profile

of velocity inside the boundary layer is provided.

And with that velocity profile, we would again see how close we are to the actual value of the

boundary layer. So the 1st problem that we would do in this tutorial class is, given a velocity

profile, can we find out what is the what is the what is the expression for the growth of the

boundary layer and what is the expression for the fiction coefficient normally denoted by CF. So

in this problem might have been mentioned that the the velocity profile inside the boundary layer

is simply linear. 

So that is the simplest possible variation. So it waves with a value equal to 0 on the solid surface

to a value equal to V at the edge of the boundary where this velocity is essentially the free stream

velocity. So if I express it into express the non-dimensional velocity as VX by capital U where

capital U is the free stream velocity than VX by U has a value equal to 0 at Eeta equals 0. And



VX by U would be 1 when Eeta is Eeta is equal to 1. That means at the edge of the boundary

layer.

Remember that Eeta is defined as Y by delta where delta is the local film thickness. Therefore

the simplest  possible profile  that  we can think of is  VX by U is  simply equal to  Eeta.  The

functional form of velocity variation inside the boundary layer is VX by U is equal to Eeta. And

we would quickly see how how this how this can be used with the help of momentum integral

equation to obtain an expression for delta, the thickness of the boundary layer and an expression

for CF. 

So we start with our analysis of the argument, with the assumed profile that VX by U is simply

equal is Eeta and see from there how to proceed in order to obtain the expressions of delta and

CF.
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So we start with the bound the momentum integral equation which is Tao W is rho U Square D

del DX from integration from 0 to 1 U by capital U, the velocity inside the boundary layer and

the free stream velocity, 1 - small U by capital U DY by delta. And the note here that it has been

given that u by U is simply equal to Eeta, that is linear velocity profile is prescribed for this

condition.



So this can be now written as rho U Square D del UX and beta where this beta is essentially, this

different integral, so beta is going to have just a numerical value. So since u by U, the velocity

profile is given so we can find out what is going to be the different integral which is a very

simple step,  D Eeta so this  is  from 0 to 1 Eeta 1 -  Eeta D Eeta.  And this  would once you

integrate, this would result in the numerical value equal to 1 by 6. So this beta is therefore equal

to 1 by 6 aince we have assumed linear velocity profile. 

And also  if  the  fluid  is  Newtonian,  then  all  sheer  stress  can  simply  be  written  as  Newton

following Newton’s law of viscosity, Del Y at Y goes 0. So this is for a Newtonian fluid. And if I

express everything in terms of the dimensionless velocity which is this and the Y is transformed

to  Eeta  than  what  I  would  get  is  simply  the  dimensionless  velocity  and  the  dimensionless

distance, everything is evaluated at Y by delta to be equal to 0. 

In other words, this now becomes mew U by delta and Del u by capital U by Del Eeta at Eeta

equals 0. Now since the velocity profile is provided to to me, the velocity is provided, so this is

simply going to be equal to 1 and therefore the expression for Tao W would be equals mew U

times delta. So what I have then is I have found out what is going to be the left-hand side of the

momentum integral equation mew U by delta.

And the right-hand side of the momentum integral equation which is simply going to be 1 by 6

rho U Square D del DX. So this therefore is simply an ordinary differential equation and the final

form of the ordinary differential equation would simply be equals times 1 by 6. This equation can

now be integrated.
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And once you integrate this equation, what you would get would be Del Square by 2 equals 6

mew by rho times capital U times X + C where this C is the constant of integration. And C can

be evaluated through the use of the boundary condition that at X equals 0, that means at the start

of the plate, X equal 0, delta the thickness of the boundary layer must be equal to 0. So using this

boundary condition, you would get the value of C to be equal to 0.

And does this delta by X would simply be equal to 12 mew by rho UX or delta by X to be equals

3.46 by root over REX. Similarly if you find out the expression for CF by definition which is

equal to Tao W by half rho U Square, this would be to mew by rho U delta. And when you put

the expression for delta from here to this, to this, what you would get is CF equals 0.577 by root

over REX. Compare this with the Blasius solution where the form but remain the same, except

the constant would be 5.0. 

Again the form here but remain the same, the constant is going to be equals to 0.664. So here you

see that even very simple approach, the simplest possible velocity profile if you assume that, you

still  are  not  too  far  off  from the  analytical  result  which  was  detained  by  solving  a  partial

differential equation numerically and using the concepts to obtain the exact form of the boundary

layer growth or that of CF. 



So this again underscores the utility of momentum integral equation in solving any problem. So

far we are limiting ourselves to laminar boundary layer and this is going to be the method of

choice for all solutions from now on. I would also solve one more problem regarding the use,

involving the use of momentum boundary use of momentum integral equation. 

And this problem is essentially a flow, again flow over a flat plate and they are not only you have

to obtain what is what is going here also profile would be provided. If the velocity profile is not

provided, you can resume polynomial and find out what is going to be the what is going to be the

variation of the velocity as a function of Eeta, the dimensionless distance from the wall. 

In the in this specific problem, it was as to what is the maximum value of the boundary layer

thickness and what is, where do you get the minimum value of wall shear stress. So if I have

flow over  a  flat  plate,  at  which  point  you  are  going  to  get  the  maximum thickness  of  the

boundary layer and secondly where are you going to get the minimum value of the wall shear

stress. See the 1st question is obvious, if there is a flow over a flat plate and since the boundary

layer keeps on growing, you would get the maximum in the boundary layer thickness at the

endpoint of the plate.

So when you reach to since the boundary layer keeps on growing, when you reach the end of the

plate, the thickness of the boundary layer is prior is going to be the maximum. So that is an

obvious answer. But we would still  see if we get whether if we get the same value. But the

question of shear stress is not that straightforward. Where all, at which location the shear stress is

going to be minimum? So that is the 2nd part of the problem. 

And the 3rd part of the problem is, find out what is the total force exerted by the fluid on the solid

plate. In other words, in order to maintain the solid plate at a static position in a flowing fluid,

what force must be exerted? So that is the 3rd problem, 3rd 3rd part of the same problem. So given

the  profile,  find  out  the  maximum value  of  boundary  layer  thickness,  find  the  location  and

magnitude of the minimum wall shear stress and an expression for the total force experienced by

the solid plate due to the motion of the fluid. That is the problem which we are going to solve

now. 
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So here also it has been mentioned that the velocity profile which is VX by U is of this form 3 by

2Y by delta - half Y by delta cube. So this is the profile which has been provided to us and using

the methodologies already prescribed here, the moment integral equation, it would be easy for

you to obtain but I would still request you to do it on your own, you would see that delta by X

but turn out to be 4.64 by root over REX.

The kinematic viscosity for the fluid is given as 1.0 into 10 to the power - 6 metre square per

second. And the length of the plate length of the plate is 0.1524 metres and with of the plate is

0.914 metres. And the velocity, free stream velocity is provided as 1.22 metre per second. So this

is free stream velocity and since it is flow over a flat plate, this is also equal to the approach

velocity.

So since delta by X is given in this form, so you would you can you can see that the expression is

simply going to be X by root over REX and the delta Max would simply be equal to at X equals

L, that means if I have flow over this than of goes the Delta Max is going to be at X equals L. So

X equals 0 to L, so therefore Delta Max would be equal to at X equals L. So when you plug in

the values, delta would be 4.64 in 1 into 10 to the power - 6 which is the kinematic viscosity

metre square per second. 



The length is simply going to be 0.1524 meter. And the velocity is, free stream velocity is 1.22

metre per second, square root of that and your Delta Max would turn out to be 1.657 into 10 to

the power - 3 metres or roughly it is close to 2 millimetres. 
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The wall shear stress on the other hand, the expression for that, the wall shear stress, so this is

why it is going to be + mew times Del VX Del Y at Y equals 0. When you transform it to in

terms of the dimensionless quantities, it would simply be mew U by Delta DVX by U DY by

Delta and it is evaluated more wall shear stress is evaluated at a point where Y by Delta is equal

to 0. 

So  therefore  your  Tao W would  be  equal  to  mew U by delta  and  for  this,  we plug in  the

expression of VX by U that has already been provided to be 3 by 2Y by Delta - half Y by Delta

cube. So when I plug this in over here and take the, take the differential, what I would get is 3 by

2 - 3 by 2Y by Delta Square, everything is evaluated at Y by Delta to be equal to 0. So this Tao

W therefore turn out to be 3 mew U by twice delta. 

So Tao W minimum would be at a point where Del ties maximum. And when you, so Tao W

minimum would be equal to 3 mew U by 2 delta Max and when you plug in the values of delta

delta Max mew U and delta, the numerical value of this, you are going to be equal to 0.552



newton per metre square. So therefore the minimum value of the wall shear stress will be 0.55 to

Newton per metre square and it would take place where X is equal to L.

So the at the edge of the boundary layer, at the edge of the boundary layer, you get the at the at

the end of the plate, the location at the end of the plate would provide you with the maximum

value of the of the of the boundary thickness and also at this point, you would get the least value

of wall shear stress. So wall shear stress is a monotonically decreasing function of distance and

delta is a monotonically increasing function of X.

So since the X, since Tao varies from point-to-point, therefore the total force exerted by the fluid

on the plate will also vary with position. So to obtain the total force, since we know that shear

stress is equal to force per unit area, so the total force on the plate would be provided if we

integrate Tao W over the entire area. So the force by the fluid on the plate F if we if we denote it

by F would simply be integration Tao W DA.

Now Tao W is not a function of W, the width of the plate. So if I take the W outside it would

simply be integration from 0 to L, Tao W times DX. So that would be the expression for force

exerted by the fluid on the solid plate. So which if we do it here, so the force FD and the term D

here stands for the drag force. So this is a force due to the fiction of the moving fluid over the

stationary plate commonly denoted by the drag, commonly denoted by drag force.

The expression would of that would be the integral over the surface Tao W times DA. So if I

express it, since we understand that Tao W does not depend on W, so it is Tao W times DX and

the W can be taken outside. And what you do here is, you are going to put the expression of Tao

W in here and therefore you would get from 0 to L 3 mew U by 2 delta times WDX 0 to L 3 mew

U 2.

And the expression of Delta from the previous previous page, where the expression of Delta was

4.64 by root over IX, if we put put it in there, what we would get is it to 4.64 root over U by mew

X times W times DX. So Tao W, the final expression would be integration 0 to L 3 mew U by

9.28 root over U by mew X times DX. so the rest is simple. 

You can simply do the integration over the entire length of the plate from 0 to L and obtain an

expression for the force on force on the plate and the final expression for Tao W can be obtained



from there which I again leave leave it for you to find out what would be the final expression for

Tao W. So this again underscores the advantage of the advantage of using the momentum integral

equation.

Now I think we are confident enough like we would be able to try to solve turbulent flow inside

a boundary layer. Now the moment we introduce the concept of turbulent flow, the moment we

allow turbulence present in the system, there are few things which we have to keep in mind. 1st of

all, the expression of Tao, the shear stress to be if it is a Newtonian, to be equals - mew times

velocity gradient will no longer hold because in turbulent flow, the transport of momentum is not

only carried, not only by the molecular motion, it is the actual physical motion of packets of fluid

having different velocities from one point to the other.

So the momentum transfer will no longer remain a molecular phenomenon. It will also have, it

will  also involve the formation of EDs or packets of fluid which will  move with a  specific

momentum and therefore transport momentum in between layers in a fashion that we did not

encounter  or  we  did  not  envisage  in  our  treatment  of  the  laminar  transport  of  molecular

momentum or shear stress. In other words, the shear stress in turbulent flow would be much

more, more significant as compared to the laminar flow. 

So we have to  keep in  mind the molecular  transport  as  well  as  the  convective  transport  of

momentum. The moment we bring in the concept of ADs then we would see that the stresses that

we have encountered in the laminar flow will have to be modified by incorporating additional

terms in the Navier Stoke’s equation collectively known as Reynold stresses which depend on

the fluctuating, locally fluctuating component of velocity as a result of turbulence present in the

system.

So it is a very complicated case whenever we talk about turbulence, mathematically treating I

mean it is it is possibly easier to visualise what happens in turbulent flow. But whenever you try

to explain it mathematically, it becomes very complex. 

So here again, the use of momentum integral equation and the approximations that we would use

would definitely be helpful in obtaining closed form expressions of shear stress and growth of



boundary layer, the expression for drag force and so on in turbulent flow. That is what we are

going to do in the next class.


