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So we are going to start with an alternative treatment of the boundary layer as we have seen

before that the analytical differential  treatment of boundary layer is possible only for the

simplest flow situation which is slow over a flat plate zero pressure gradient no body force

and limited to laminar flow only. Now of course in real life you are most likely going to get

turbulent flow over a curved surface in any of the applications that you can think of it's

always it is you are not going to get a straight plate flow over a straight flat plate and the flow

should, will be in laminar condition so in order to assess, in order to address this type of

problems i have discussed before that instead of a differential approach, an integral approach

would probably be better to start with. 

And in integral approach unlike in differential approach we are not interested in obtaining let

us say the velocity or the velocity gradient in the every point in the flow field we are more

interested in finding out what would be these parameters, velocity or velocity gradient at

crucial points where we need to know the value in order to predict for example what would

be a drag force of a submerged, submerged object when there is flow over it. So we would

like to know what is the velocity gradient at the liquid solid interface. So in order to use the

integral approach which we understand is going to be approximate and we would see towards



the end of this class how good these approximations are going to be in terms of predicting

something which is very close to those cases for which analytic solution is available. 

So whenever you propose anything new you must do, uh you must show that the approach

you are proposing is going to provide values which are close to those which are already

established. It would be better if you can match your proposal, proposed methodology with

an, with the results from an analytic approach. So once you can, you establish the correctness

of your method by comparing with established results, by benchmarking it with established

results then you can, you can proceed to obtain more involved cases using the methodology

proposed by you. So in the case of momentum approach or the momentum integral equation

we would do the same. 

But before we go into the derivation, conceptual derivation, I will not do all the steps of

derivation in this, you are going to take a look at your textbook. In this case I am following

Fox and McDonald, so you take the look at the derivation I would only explain the important

conceptual text, conceptual steps of the derivation and the rest you can look and if there is

any question I would be happy to answer them. But before we start there has to be, there is a

fundamental relation which you must have studied in fluid mechanics, in undergraduate fluid

mechanics which I would invoke in here and instead of deriving is since you already know

about it, I would once again explain the significance of each term in that equation. 

So this equation is an integral approach, this equation is macroscopic balance and when we

say macroscopic balance it could be a balance of mass, it could be a balance of momentum,

or it could be balance of anything so to say. So we would first see what that equation is and

then start using that equation in order to obtain what would be the profile what would be the

thickness of the boundary layer as a function of actual distance because that is our ultimate

objective. We would like to know what, how does delta which is the boundary layer thickness

vary with x, the actual distance and is it possible to use that information to obtain what would

be the velocity gradient at the solid liquid interface because if we know the velocity gradient

at the solid liquid interface then it would be possible for us to obtain the value of the shear,

the expression of the sheared stress and sheared stress integrated over the flow area over the

entire flow area would give us the drag experienced by a moving object in a fluid. 

So that's our, our goal but in order to do that we must first establish what is the macroscopic

balance equations or rather starting with the macroscopic balance equation we will slowly

move on to the momentum integral equations and we would see applications of momentum

integral equations for situations in which the answers are known to us may be from Blasius



solution or we would also use the momentum integral  approach for solving situations in

which no analytical solution is possible. But the first and important step is benchmarking.

Before we go to that point let's start with the macroscopic balance equation which I have

written over here. If you would look at the macroscopic balance equation 
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the one that is, in this case I am following the, as I said 
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the treatment provided in Fox and McDonald, so for any control volume this d N d t of the

system is equal to these two terms. So I would slowly go through each of the steps what they

are and then I will explain them. 

First of all, 
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N is any extensive property of the system. N could be the mass of the system, N could be the

momentum of the system. So N is any extensive property of the system where as eta which is

N by mass, m stands for the mass of the system so eta is equal to N by m is the corresponding

intensive  property  so  N is  the  extensive  property  and eta  is  the  corresponding  intensive

property. Now let's also go through what is the significance of each of these terms. So first of

all d N d t, the 
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d N d t system is the total rate of change of an arbitrary extensive property of the system. So

this arbitrary extensive property can be of several things and we would give examples, we

would see examples, rather 
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use of this N, one in the case of 
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mass and the second is in the case 
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of momentum. So this equation relates the change in the extensive property of the system

represented by N to eta which is the corresponding intensive property obtained by dividing

the extensive property with the mass of the system. So the change in the extensive property of

the system is going to be the, the algebra is the result, is going to be the algebraic sum of two

different quantities. If you assume that this is, 
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let's say this is the control volume then you can have extensive property coming into the

system from all the sides. So through the control surfaces, through the control surfaces, the

extensive property can come into the control volume and there could be something, a process

which  would  change  the  total,  total  content  of  the  extensive  property  inside  the  control

volume. So the system, 
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the extensive property change of the system is the sum of the time rate of change of int, of the

extensive property inside the control volume and the amount of extensive property which

comes into the control volume through the control surfaces. So that is essentially the physical

statement of the law, of the rule I have just written. 

So now let's go back to the, to the slide once again and see what they are. So your d N d t is 
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the total rate of change of an arbitrary extensive property; del del t of eta rho d v when we

have the intensive property and this rho times d v where v is the volume, this is essentially

the mass so if we integrate this quantity over the entire control volume what you are getting,

and take  the  time derivative  of  that,  what  you are  getting  is  time rate  of  change of  the



extensive property N leaving the control volume. Again look at it once again eta is essentially

the intensive property, rho d v is the mass so if we integrate eta over the entire control volume

what you get over here is the extensive property contained within the control volume and you

are taking the time derivative of that. So the significance of this  term is the time rate of

change of the extensive property N within the control volume. 
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Now let's take a look at the third, the second term on the right hand side. First of all, eta is the

intensive property, rho is the mass of the system and v dot d a is, is essentially telling you

how much of the liquid, how much of the, how much of the extensive property is coming in

through the control surfaces. So v dot d a multiplied by rho is going to give you the extensive

property, the extensive property, the entire thing is going to give you the extensive property

which is coming through the control surfaces, one more time. This v times d a multiplied by

rho and multiplied by eta, this term rho times v dot d a is the mass of the, mass which is

coming in through the control surfaces. So when I integrate rho v d a over all possible control

surfaces, what I get is the mass which is coming, net mass through some surfaces the mass

may be entering, 
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through some surfaces mass may be going out, Ok. When you integrate over all possible

control surfaces, rho times v dot d a, when you integrate through, over all control surfaces

that define the control volume, what you get is the total amount of mass which is coming into

the system, coming into the control volume. So when we integrate over the control surfaces

eta times rho v dot d a then you are essentially finding out what is the net inflow of the

extensive property N into the control volume through the control surfaces. So by means of

convection  or  by any means when something,  the extensive  property crosses  the control

surface you essentially have the net efflux, that is net of inflow and outflow of the extensive

property to the control volume. So in the control volume, two things are happening. One is

the total amount of the extensive property contained in the control volume may be changing

if it  is an unsteady state process, Ok and secondly some amount of extensive property is

coming in through the control surfaces and, and when you integrate over all such possible

surfaces you find out the net addition of extensive property to the control volume. 

Very quickly what, I am sure you know what are control volumes and control surfaces but I

will just give you a quick update on this, just remind you what it is. So the control surface has

no mass, Ok. So you can think of it as if it is this page, 
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if you assume that it  has no mass and therefore the conservation equation for the control

surface would simply be mass, energy or anything in must be equal to out. So for a control

surfaces, control surface in is always going to be out. So a control surface doesn't have a mass

of its own. The control surfaces are only used to define a control volume. So control surfaces,

the control surfaces define the control  volume which has a mass of its  own, Ok. So the

conservation equation which takes the form in equals out for the case of the control surfaces

will change to the more conventional one that is, in minus out plus generation plus or minus

generation is equal to accumulation. 

So a control volume, for a control volume, the full form of the conservation equation has to

be used in minus out plus or minus generation is equal to accumulation while for a control

surface, since it does not have a mass of its own, in of anything, in of mass will always going

to be equal to out of mass. So when we think of control surfaces back to the our previous

equation, through the control surfaces, some extensive property whatever be that extensive

property,  that  extensive property  may enter  the  control  volume or  may leave the  control

volume. So when we integrate these quantities over all possible control surfaces that define

the control volume, what you are getting is the net inflow sometimes it is also called the

efflux, the efflux of the extensive property N to the control volume. So the second term of the

equation that I write over here essentially 
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tells me this is the net rate of efflux of the extensive property N through the control surfaces.

So what I have then, the first term refers to the system, the second two terms refer to the

control volume. So it  is time rate of change of the extensive property within the control

volume and this is the net rate of the efflux of the extensive property N through the 
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control  surfaces.  So one is  an unsteady effect,  the second one is  due to the flow of  the

extensive property through the control surfaces. As a result of these two, the total content of

the extensive property N in the system will change. So that is essentially the conservation

equation for the extensive property N and this is the stepping stone for integral analysis of

fluid motion. So with this now we will go back, we will 
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see what are the effects, what are the different control, what are the different types of N 
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we can think of and what would give rise to, in terms of the equations that we already know. 

So I would start with, I would write this equation one more time d N d t system is del del t of

eta rho d v plus over the control surface eta rho v dot d a. Now if we think of mass, 
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if we think of mass, then N, the extensive property is simply going to be mass and eta which

is defined as the extensive property per unit mass will have a value equal to 1. And since we,

from the conservation 
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one  can  write  that  the  left  hand  side  of  this  is  going  to  be  equal  to  zero  due  to  mass

conservation and this one is going to be del del d of rho d v plus integration over control

surfaces  eta  is  going to be 1,  rho v dot  d  a.  So this  is  nothing but  the statement  of  the

conservation of mass and more commonly in fluid mechanics it is known as the continuity

equation. So this is the continuity equation and for the case of the steady state, this equation

tells  me that this  term would be zero and therefore integration c s rho is ,  and if  this is

incompressible fluid then rho can be taken out, v dot d a is going to be equal to zero since 
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it's a steady state, this term would not be there and this would lead to the, the more common

equation that you know is that v 1 a 1 plus v 2 a 2 plus is going to be equal to zero. So 
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summation v i a i would be equal to zero. So this form of, if continuity equation you have

used, I am sure you have used somewhere or the other. So when you take the N to be 
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equal to m then the corresponding intensive property is one and what you get out of it is

simply the equation of continuity. Now we would see what happens if N is, N is going to be

equal  to  momentum. So if  N is  momentum,  mass  times velocity  then  the  corresponding

intensive property must be equal to velocity. Since intensive property is equal to extensive

property per unit mass. So if my, if I write this equation for momentum what I get is my eta

would simply be equals extensive property per unit mass. So this is going to be equal to the

velocity ok and 
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what  is  going to be the left  hand side,  it  is  d d t  of momentum, time rate of change of

momentum and what is, if we, so the corresponding extensive property I call it as p where p



is the momentum and therefore the left hand side simply becomes d p d t and this d p d t is

nothing the time rate of change of momentum so this 
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would simply give me that this is the force acting on the control volume and this  would

simply be equals del del t of v, the velocity this is, which is, which was eta before, rho d v

plus this is over the control volume and this is over the control surface v rho d, sorry v rho d

a. I will write it again. 
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For the case of momentum, what we get is N equals p where p is the momentum. So therefore

the left hand side of the equation is d p d t and 
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d p d t is essentially the time rate of change of momentum which is, which is the force in, if

this is the force then the left hand side would be del del t integration over the control volume;

instead of eta the corresponding intensive property I have v now, rho d v plus efflux through

the control surfaces, intensive property then rho v dot d a. So this is what I have here is the

momentum equation. Ok, let's think about 
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the significance of it once again. What I have on the left hand side is d d t of p where p is the

momentum. So time rate of change of momentum is essentially the force acting on the control

volume. On the right hand side I have del del t instead of eta, I have the velocity and over

here also instead of eta I have the velocity. So this is rho times d v is the mass, mass times

velocity  is,  is  the  momentum.  So time  rate,  del  del  t  of  that,  essentially  the  amount  of



momentum, the momentum accumulation of the control volume. So if it is a steady state then

this  del  del,  this  term would  be  zero.  If  this  is  not,  this  is  the  time  rate  of  change  of

momentum inside the control volume. I come back to over here. What this tells me is rho v d

a is the mass which is entering to the control volume through the control surfaces and once

you have, once you multiply it with v, this is the momentum which is either coming in or

going out of the control volume through the control surfaces. So this term signifies the net

addition of momentum through the control surfaces because of flow. 

So the force on the control volume is essentially can be expressed in this form starting with

the macroscopic balance equation which we have already provided before. So this gives us a

neat handle on the equation, on the momentum equation which we would use for the case of

boundary layers. Now the force can also be divided into two forces, one, one is the surface

forces, the example of surface forces is pressure, the example of another surface force is

shear stress. So the force acting on the control volume can be divided into two different types

of forces, the first one is surface force; the second one is body force. Examples of surface

force would be pressure and shear, the example, the common example of body force would

be gravity. So the left hand side of the equation that I have just written can be written as the

sum of the total force can be the sum of the surface force and the body force. So the form that

I would finally use for this is, this is the final form of the momentum equation 
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that we would use in all our subsequent analysis. 

There is one more, 
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two points I would like to mention are that all velocities that we talk about are measured with

respect to the control volume, relative to the 
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control volume. So all the velocities that we refer here are measured with respect to, are

relative to the control volume and second by, by convention mass in is negative, mass out of

the control, out would be positive which is, which is clear because 
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we have the product, the dot product of the velocity vector and the area vector. If this is the

control surface the area vector will always point out, point to the outer side, outwards. Now if

you have velocity in,  which is  coming in through the control  surface then obviously the

product is going to be negative where as if you have the velocity which is in the 
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same direction as that of the area vector, in that case the dot product of the velocity vector

and area vector would be positive. So whenever we evaluate this term, whenever we expand

this term for all the control surfaces, let us say control volume consists of, control volume is

defined by four 
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or six surfaces. Through three of the surfaces the mass is coming in and through three, the

other three mass is going out. So while writing the formula for total amount of extensive

property that comes in to the control volume with the flow rate, anything that comes in will

be treated as negative and anything that goes out will be treated as positive and which, which

takes place because we express the amount of mass which is coming in to the control volume

by the dot product of the velocity vector, the area, and the area vector and multiplying the

whole thing with rho which is the density which is a scalar. So and since the area vector is

always pointing outward, normal to the control surface, therefore in is negative and out is

positive  so  please  do  remember  that  while  solving  the  problems  that  we  will  use  this

convention, we will use this concept throughout our, throughout the rest of our treatment of

boundary layers. 

So what we have done here, we haven't gone into the boundary layer as yet. What we have

done so far is we have started with a macroscopic balance equation. The macroscopic balance

equation tallies the total amount of the extensive property, any arbitrary extensive property of

the system with that of the change in the extensive property inside the control volume and the

net efflux of the extensive property to the control volume. Now in the limiting case, when the

system and the control volume coincides, what we have then is the, the, we have then use the

extensive  property,  let  us  say  the  mass,  where  extensive  property  is  the  mass  and

corresponding intensive property is equal to 1,we have obtained the conservation equation. 

In the second case, and if it is steady state then the first term on the right hand side, the del

del t integration c v that term would disappear and what you would get is the conservation

equation, the continuity equation that we are more familiar with, which is v 1 a 1 plus v 2 a 2



plus v 3 a 3 up to v N a N would be equal to zero. The positives and negative signs are to be

incorporated by, by thinking whether it is a flow in or flow out. If flow in, it is going to be

negative, if flow out it is going to be positive. Next, we have assumed this extensive property

to be the momentum of the system, so mass times velocity. 

The moment it is momentum, the left hand side of the original equation, the d d t of N, N

being the momentum this becomes the force, time rate of change of momentum and the force

can be classified either into body force or into surface force and in the right hand side the we

have, the, the time rate, the change of the extensive property inside the control volume which

at steady state would be equal to zero and the right hand side would be the net efflux of the,

of the, of momentum into the control volume. So we have the final equation is then 
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is the surface force, the body force, the time rate of change which in the case of steady state

would be zero and this is v, rho, v dot d a so this essentially my momentum equation that I am

going to use in the next, in the next 
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I am going to use this for analyzing the boundary layer. Two special points, 
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all velocities are measured relative to the control volume and mass in is taken to be negative

and mass out is going to be positive and in the next part, segment we will use this equation,

these  two  equations,  this  equation  as  well  as  the  conservation  equation  for  solution  of

boundary layers uh where the restrictions of zero pressure gradient, 
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the restrictions of laminar flow et cetera would not have to be present.


