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In continuation with what we have done in the previous class, we were looking at how to

analyze the growth of a boundary layer on a flat plate in laminar flow. The objective of that

exercise was to  obtain delta,  the thickness  of the boundary layer  as  a  function of  actual

distance that is the distance along the length of the plate. And we have also seen that inside

the boundary layer the flow is two-dimensional. Outside of the boundary layer, the flow is

inviscid in  nature such that  Euler's  equation,  Bernoulli's  equation is  applicable.  However

inside the boundary layer, the complete Navier–Stokes equation has to be solved in order to

obtain the profile of the thickness of the boundary layer as a function of x where x denotes

the actual distance. 

We, from our basic understanding of the physics of the process, we have done some analysis

based on which is going to be a significant term in Navier–Stokes equation and which is not.

First of all we have assumed that it is a zero pressure gradient flow and since the plate is

horizontal there would be no effect of gravity. So the, and it’s a two dimensional flow where

the velocity v x, velocity components v x and v y would be functions of both x and y. The

plate is wide in the z direction therefore the z dependence of velocity does not appear in the,

in  our  analysis  of  Navier–Stokes  equation.  So we have  four  terms  in the  Navier–Stokes

equation. The first two on the left hand side as we have seen before, these two terms, 
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essentially they refer to the convective momentum and this is the conductive or molecular

transport of momentum And using the boundary layer approximations what we have seen is

that v x is relatively large compared to v y because the principal motion is in the x direction.

However since the thickness of boundary layer which is denoted by, the dimension is denoted

by y, since the gradient of the variation in velocity with respect to y is large in comparison to

the gradient of velocity with respect to x, none of these two terms can be neglected, can be

equated to zero based on sample heuristical analysis. However if we come to the right hand

side,  this  denotes  the  molecular  transport  of  momentum  in  the  y  direction  and  this  is

molecular transport of momentum in the x direction. Since the gradient of v x with respect to

y is large,  it  is expected that the transport  of momentum, molecular momentum in the y

direction would be much more than the transport of molecular momentum in the x direction

since the gradient of velocity in the x direction is small. 
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So based on our idea about the gradient of the x component of velocity in the y direction and

in the x direction, it is safe to say that the gradient 
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of the molecular transport of momentum in the y direction would be much more than the

molecular transport of momentum in the x direction which leads us to the governing equation

and we understood that there would be no slip at y equals zero and at the edge of boundary

layer or beyond the boundary layer when y mathematically speaking when y tends to infinity,

the velocity would simply be equal to the freestream velocity, that is the velocity outside of

the boundary layer and at the x equals to zero, v x, that is actual component of velocity in the

x  direction  would  simply  be  equal  to  u  where  u  is  the  approach  velocity.  And  we also



understand that for a flat plate, v, the approach velocity would be equal to u, the freestream

velocity so therefore we can simply write v x equals u. In the next step we have 
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proposed 
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the solution is by Blasius where he reasoned that the dimensionless velocity profile when

plotted against the dimensionless distance from the solid wall would be similar for all cases.

And this eta which is the dimensionless distance from the solid wall is expressed as y by delta

where delta is a local thickness of the, of the boundary layer. However we understand here

that this delta is a 
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function of x as we progress in the x direction, the delta keeps on increasing. So therefore his

reasoning,  Blasius  reasoning  is  that,  which  is  supported  by  experimental  data,  that

dimensionless  velocity  profile  would  be  similar  when  plotted  against  the  dimensionless

distance from the solid wall. So with this, then we have two equations to deal with. The first

one is equation of continuity and the second is equation of motion. If we introduce a stream

function, then because of the properties of the stream function the first equation, the equation

of continuity gets automatically satisfied and we are left only with the equation of motion.

This 
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equation of motion 
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and using the method of combination of variables which we have discussed in the previous

class, we are hoping that this p d e can be transformed to an o d e and that's essentially the

method of combination of variables and we would see whether it would work here in this

specific  case  or  not.  And  since  we are  expressing  everything  in  dimensionless  form,  so

instead of a stream function, we are introducing a dimensionless stream function denoted by f

and we understand that this f is a function of eta, the dimensionless distance from the solid

wall and this is how the dimensionless, the dimensionless stream function is expressed. So we

do not deal with v x, v y any more, we rather deal with chi which is a stream function since

chi  we  know  what  would  be  the  expression  for  v  x  if  we  know  chi  and  since  it  is

dimensionless equation we also do substitute chi with a dimensionless stream function. 

So therefore f  eta is a function of eta and we are,  we are hoping that this  p d e can be

transformed to an o d e when instead of v x del v x del x v y del v x del y and so on. We

introduce  the  dimensionless  stream function  and  instead  of  x  and  y  as  the  independent

variable we will bring eta as an independent variable. So if we are correct, then our final

equation would contain f and eta. So if it contains f and eta and if you understand that f is a

function only of eta then the governing equation between f and eta will simply be an o d e. So

this is 
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what we have, we have 
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done in the previous class and based 
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on an approximate solution of the equation near the edge of the boundary layer where we

have seen what  would  be the  orders  of  magnitude of  these various  terms,  we also have

defined that the dimensionless distance 
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or rather the combination variable which contains both y and x should be of the form where

eta equals y root u by nu x, this is the kinematic viscosity. So with this and with our definition

f and eta we would see whether this equation can now be transformed to an o d e. So we 
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will start from that point and what we will first do is using the definition of v x which is del

chi by del y and I would write here how we have defined eta, this is how we have defined eta.

And I would show you just one example and the governing equation is v x del v x del x plus

v y del v x del y equals kinematic viscosity del square v x by del y square. So this is the

governing equation. We need to to substitute 
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each of these terms in terms of chi or in other, in dimensionless form in terms of eta So I will

just  show you one,  two examples of how to get  the expression for v x and v y and the

expressions for del v x del x and del v x del y and del square v x by del y square are given in

the textbook and for this part, I am following the book of Fox and McDonald. So if you see



the book of Fox and McDonald,  Fluid Mechanics which is one of the textbooks for this

course, the complete derivation 
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with all its particulars would be, 
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would be clear to all of you So we are trying to right now find out what is going to be the

expressions for v x, v y and all other terms in the equation of motion in terms of chi, the

dimensionless  dependent  variable  and  eta,  the  dimensionless  independent  variable.  The

expression of eta we have already obtained based on the order of magnitude analysis. So I am

going to show you how to get the expression for v x and v y, the other terms of the equation

of motion can be seen from the textbook Fox and McDonald. So let's see how we do v x in



this case. So from definition, we can simply write this and if we introduce the f is defined as

chi by root over nu x u. So if we do this, 
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del chi by del y, if we transform that chi to f it would be simply be equals nu x u times d f by

d eta. See that since f is a function only of eta, the combination variable, I am getting rid of

the  partial  sign  and  I  am  simply  getting  the  ordinary  differential  equation,  ordinary

differential form in this. So it is d f by d eta and not del f by del eta and if I find out what is

del eta by del y from over here, I would simply get as u by nu x. So this directly follows from

our definition of eta. So therefore 
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this expression is u times d f d eta so my v x therefore equals u times d f d eta this can

subsequently be substituted in here. Similarly when we 
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start with v y which is by definition of stream function del chi by del x, I can write it as minus

del del x instead of chi I am going to write here as nu x u which can then 
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be expanded as, so this is just an expansion, 
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and when we continue with the derivation 
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of this, what we would get u i from the previous page, it is simply just a substitution 
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of the independent variables, so instead of del f del x I simply write d f d eta since f is a

function only of eta. I will simply write the final steps since it's given in a nice form in the

equation, in the textbook, so this is the expression for v y and from 
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previous slide we have seen v x is equal to u times d f d eta. The expressions for and the

governing 
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equation as we have seen before is del v x del x, so I can substitute the expression for v y in

here, the expressions for v x in here, all these, the remaining terms can also be evaluated

which I am not showing in in here but it is given in the text. 
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So I will leave that out and what it turns out, what it would result in is this as my governing

equation. So this is going to be the governing equation. 
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The major thing that one should first see is this is an O D E. 
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So we are successful in transforming this P D E to O D E by invoking the 



(Refer Slide Time: 15:36)

definition, by invoking a stream function by using, through a use of a combination variable

eta that contains both x and y and a judicious selection of the, judicious selection of the, of

the expression of eta 
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from an order of magnitude analysis enables us to convert the p d e to an o d e. However if

you look at the P D E, look at the O D E, it's non-linear O D E of higher order terms. So even

though we could get an expression, a neat governing equation, ordinary differential equation

for the growth of boundary layer for the simplest possible case which is flow over a flat plate,

it is still impossible, not possible to obtain a closed form solution. So even though we have

the governing equation, we have the, we know what are the boundary conditions, a solution

to this is not possible using analytical methods. So numerical methods will have to be used,



was used by, by a researcher named as Howarth and what he has presented is, he solved this

equation numerically and presented a table containing, in the column, the first  column is

values of eta, corresponding values of f, the next column contains the value of f prime which

is d f d eta, f double prime and so on. 

So looking at the table, the numerical solution of the governing equation with appropriate

boundary conditions you generate  the results  table.  But the results  table in itself  is  quite

informative and it  would give us,  give us  a form, a  compact  form of the growth of the

boundary layer. Or in other words, the first thing that we started our, this exercise is to obtain,

to obtain the relationship of delta as a function of x. So this table can now be used to obtain

this functional form of delta in terms of x, that's what we would see next. So we are, we are

starting with this equation, the governing equation. We also know that eta is defined as, and

we have seen the expressions of v f to be equals d f d eta and the expressions for v y to be

equals half, these are the expressions that we have seen. So we will use this later on. 

(Refer Slide Time: 18:47)

We also understand that the boundary conditions to solve this equation are, at eta equals zero,

that means eta equals zero means y equals zero, at y equals zero we understand that v x is

going to be equal to zero. So if v x is zero, then d f d eta must be equal to zero. I will repeat it

once again. At eta equals zero, the first condition, at the liquid solid interface that means at y

equals zero, the velocity in the x direction due to no-slip condition must be equal to zero. So

if velocity in the x direction is zero at eta equals zero which essentially tells me that d f d eta

would be equal to zero. So d f d eta would be zero, that's my boundary condition. I also

understand
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that due to the same no-slip condition, not only v x would be zero at eta equals zero, v y

would also have to be zero at eta equals zero. So when you have a no-slip condition, both

components of velocity, that is v x and v y would be zero. 
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So if both v x and v y to be zero, then I, from the expression of v x I have obtained that the

necessary boundary condition is f prime or rather d f d eta to be equal to zero. Now let's look

at the expression of v y to see what would be the no-slip condition on v y would give me the

value of either f, f prime or f double prime to be used as a boundary condition to solve this

problem. So let's look at the v y. 
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At eta equals zero that means at y equals zero, I understand that this is zero since my v x is

zero which I have already obtained. So at v y to be zero, this, since this is zero, this term must

also be zero. So it's simply going to be 
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not only the gradient of f with respect to eta is zero at eta equals zero which directly can be

seen from the expression of v x, the requirement that v y will also have to be zero and since d

f d eta is already zero it must also be zero. So the boundary condition, no-slip boundary

condition would be f equals zero and d f d eta is also equals zero. And the other boundary

condition, when eta is infinity, when eta is infinity that means y to be very large and when y

is very large, v x approaches or v x becomes equal to u. So at a point when eta tends to

infinity  which physically  represents  a  point  far  from the  solid  plate,  the velocity  of  the,



velocity of the fluid, velocity of the fluid at that point would simply be equal, would simply

be equal 
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to the freestream velocity So the form of the equation for v x would tell you that the d f d eta

since v x is equal to u times d f d eta, since v x and u are equal at that point, you simply have

d f d eta to be equal to one which would constitute the other boundary condition to solve the

problem, to solve the O D E. So for this third order O D E, now we have three conditions.

One is the no-slip, that is eta equals zero, both f and f prime are equal to zero and at the other

end when we are far from the flat plate, since v x is equal to u, I am simply going to get f

prime is equal to one. So these are three boundary conditions which Howarth has used in

order to obtain a numerical solution of the governing differential equation. So at eta equals

infinity, f prime is going to be equal to one. 
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Now the table that he has provided is eta then f then f prime, f double prime. I will 
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only list some of the values in here. 
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The rest you should be able to see in your textbook and I would only write those terms which

are going to be relevant for our subsequent analysis. But he has, he has given a detailed list of

values of f, f double prime and f, f prime and f double prime for different values of eta. But I

would list only some of the values, 4 or 5 values of this table. 
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So this turns to be zero. This is zero and this would be point 3 3 2. And 
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5 point 0, 3 point 2 8 3 2 9, 0 point 9 9 1 5 5 and 0 point 0 1 5 9 1 and some other values 
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which we would subsequently use in a tutorial class Almost 1, this is almost 1, Ok. 
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Let's look at these values. These are from the numerical solution of Howarth. So if you look

at 
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the definition of v x, you understand that v and v x to be equal to u, f prime has to be equal to

1. So the definition of v x 
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tells you that in order for the velocity to approach the freestream velocity, to be equal to the

freestream velocity, the value of d f d eta must be equal to 1 Now if you recall the definition

of 
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the edge of the boundary layer or the thickness of the boundary layer, we have seen that it is

at point at which the velocity reaches 99 percent of the freestream velocity. So let's see where

we have this 99 percent. It's at this point. So at this point, the f prime is about 99 percent, so

therefore v x by u is equal to point 9 9 and therefore it reaches 99 percent of the freestream

velocity. And when does it happen; when eta is equal to phi. So I will write that eta equals phi

where f prime is equal to 1 can be written as 
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the edge of the boundary layer, can be taken as the edge of the boundary layer; so let's see

how does that help us. We understand that by definition eta is y root over u by nu x and eta 
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equals 5 can be taken as the edge of the boundary layer. So if that is so then at that point,

when eta is 5 point 0, this y would simply become equal to delta where delta is the thickness

of the boundary layer. Once again, for value of eta we have seen f prime is equal to point 9 9

1, that is the velocity v x by u is equal to point 9 9. So velocity reaches 99 percent of the

freestream velocity and at that point y must be equal to, y must be equal to delta. 
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So you have an expression for delta from here as 5 point 0 by root over u by nu x which can

be slightly modified, slightly changed. This is r e x, it’s just a reorganization of the terms and

nothing else. 
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So what you get  is  delta to be equal to  5 point x by root  over r  e x.  So this  term, this

expression 
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tells you what is the thickness of the boundary layer at a given axial position So if you have

the growth of the boundary layer, if you fix the actual position which is x, you know exactly

from this closed form equation what is going to be the delta at that point. So we have, we

have achieved one of our goals, that is to obtain the thickness of the boundary layer at any

given axial position. 

Let us quickly 

(Refer Slide Time: 28:05)

go through, look at some other important parameter which the engineers would like to have

which is to obtain, what is the shear stress exerted by the moving fluid on the plate or in other

words what is the wall shear stress. Can we use the numerical solution of Howarth to obtain



such a closed form solution for the wall shear stress as well? So we quickly do that. The wall

shear stress, wall shear stress is simply, which I denote by tau w is mu del v x del y at y

equals zero which can be written 
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as del del y Instead of v x it is del chi by del y at y equals zero. Now if I bring in 
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instead of y, the concept of eta, the combination variable, it is del del y of u d f d eta at eta

equals zero. So after 
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a bit of substitution which you would be able to see in your text, it would simply be equals

mu times u root over u by mu x times d 2 f by d eta square at eta equals zero. So this is the

expression for wall shear 
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stress And the only thing unknown here is what is the, what is the number d 2 f by d eta

square 
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at eta equals zero. I bring in this, so d 2 f 
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by d eta square which is nothing but f double prime, for the value of eta to be, at eta equal to

zero, f double prime is simply equals point 3 3 2. So the numerical value of this is simply

equals point 3 3 2 from the numerical solution of Howarth. So I will bring in this point 3 3 2

over here and what would I get at, since at eta equals zero f double prime to be equals point 3

3 2, what you would get, 
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tau w to be equals point 3 3 2 u times root over rho mu u by x equals point 3 3 2 rho u square

by root over r e x. 

(Refer Slide Time: 30:44)

So once again I write here the expression of tau w to be equals point 3 3 2 rho u square where

u is the freestream velocity by r e x, that is another compact expression for 
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the wall shear stress and sometimes we define a shear stress coefficient which is traditionally

denoted by c f. 
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By definition, c f is wall shear stress by the dynamic pressure and therefore if you bring in the

expression of tau w in here, what you would get is point 6 6 4 by root over r e x. So the three

equations, three conditions, three expressions that we have obtained 
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are through this exercise, are these three. One is the first is an expression of 
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the boundary layer thickness The second is an expression of the wall shear stress and the third

which is just by definition more commonly known as the shear stress coefficient, these two

are equivalent. These two are equivalent, an expression for the shear stress coefficient which

is point 6 6 4 by root over r e x. So one can see then that through the 
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use  of  Navier–Stokes  equation,  boundary  layer  approximation,  identification  of  the

appropriate boundary conditions, evaluation of a combination variable which combines both

y and x into eta through an order of magnitude analysis, introduction of stream function and

dimensionless  stream  function,  all  these  complicated  steps  are  necessary  to  convert  the

Navier–Stokes equation inside the boundary layer that too for two dimensional flow inside

the boundary layer to an o d e but even that o d e is, is non-linear o d e and it is higher order

as well. 

So analytical solution was possible and one had to use numerical solution techniques to, to

obtain the results which is for any value of eta, what are the values of f, f prime and f double

prime. And since we know how would, how would the velocity v x, velocity in the x direction

behave when we reach the edge of the boundary layer and what would be the gradient of

velocity at y equals zero, that is on the solid plate, we would get, we finally got expressions

of delta as a function of x and tau w or c f, the friction coefficient as a function of x and other

flow parameters, the physical property of the fluid and so on. So for the simplest possible

case, it is complicated, Ok. 

So this method can be used for flow over a flat plate but this approach is, cannot be used for

any complicated geometries. This is only limited to laminar flow. So if the fluid is, if the fluid

is undergoing, or in turbulent flow this expression cannot be used. This is for a zero pressure

gradient flow. If you have a pressure gradient present in the system because of the, since it is

not a flat plate, then approach cannot be used. So we have a solution but the solution is for

the  simplest  possible  case  and  it  cannot  be  termed  as  a  general  solution  or  easy  to  use



approach in solving the boundary layer parameters for any type of flow on any geometry or

any type of surface, any geometric surface. 

So there has to be a generalized method which is easy to use and is not restricted by all these

constraints. So what we would do in the next few classes after I solve one problem, a tutorial

class on this is to, is to show you a generalized approach in which it would be far more easier

to handle situations which are not so-called the ideal systems, flow over a flat plate. It would

be approximate but  it  would still  allow us to compute these numbers,  the growth of  the

boundary layer, the value of the wall shear stress and so on in a much more effective and easy

to use way. So that is what we would do in the next class.


