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So what we have seen in our previous treatment of boundary layers, we were restricting

ourselves to a flat flow over a flat plate and when the flow was laminar. What we understood

that it’s the effect of the flat plate will become less and less at certain point inside the fluid

after a certain depth the flow becomes equivalent to that of the freestream flow. So if we have

a flat plate and the fluid is approaching it with a constant velocity which is also known as the

approach velocity then close to the solid layer the effect, the velocity will vary from the no-

slip condition which is zero velocity on the flat plate to asymptotically it will merge smoothly

to the flow outside of the thin layer which is known as the boundary layer in which the effect

of viscous forces are important. 

So beyond the thickness of the boundary layer the velocity will remain constant and for a flat

flow over a flat plate laminar flow over a flat plate, this velocity, the constant velocity beyond

the boundary layer which is known as the freestream velocity, the velocity which is free from

the viscous effects, its known as the freestream velocity and for the special case of flow over

the flat plate the approach velocity and the freestream velocity, these two are going to be

equal. Inside the thin boundary layer, the effect of viscous forces will be predominant. Now

close to the surface the effect of the viscous forces would be more and as we move away

from the flat  plate,  flat  solid  force the effect  of the viscous forces  will  be progressively



smaller and beyond the boundary layer the flow can be treated as inviscid where there would

be no effect of viscosity and therefore the velocity profile in the flow outside of the boundary

layer can just resemble, just a flat profile. 

So approach velocity and the  freestream velocity outside of the boundary layer for flow over

a flat plate, they are equal inside the boundary layer the flow is two dimensional, the effect of

viscous forces are going to be important, beyond it the effect of viscous forces would not be

applicable. So truly speaking Euler's equation which is for an inviscid flow is valid for the

region outside of the boundary layer where as the Navier–Stokes equation which is for a

viscous  fluid,  which  is  for  equation  of  motion  of  a  viscous  fluid  of  constant  mu  and

Newtonian fluid, the Navier–Stokes equation would be valid for flow inside the boundary

layer. 

And we have already discussed the historical significance of the boundary layer concept and

how does that help in correlating the theory and the experiments while designing the motion

of ships in sea. The thickness of this boundary layer is arbitrarily defined as the point at

which the velocity of the fluid is equal to 99 percent of the freestream velocity. So it is very

close to the freestream velocity and the number is defined as the 99 percent of the freestream

velocity. So if we call small u as the velocity inside the boundary layer which since the flow

is two-dimensional this u is going to be a function both of x where x is action direction or

direction of flow and y where y is the distance from the, vertical distance from the top plate. 

So u inside the boundary layer is a function both of x and y where as outside of the boundary

layer it's a constant, the small u will simply becomes equal to u infinity u suffix infinity

where u infinity is the  freestream velocity so how does this small u, the velocity inside the

boundary  layer  changes  with  distance  from  the  solid  plate  is  something  which  is  of

importance and you will subsequently see why it is so but by the definition of boundary layer

thickness, small u divided by capital U, the local velocity inside the boundary layer and the

freestream velocity outside of the boundary layer, the ratio of these is equal to point nine nine

which is known where the value of y where this condition is reached is called the boundary

layer thickness or the disturbance thickness. 

Now we can understand since the velocity near the edge of the boundary is very small so a

small change in I mean it is difficult to demarcate the exact location at which the velocity

becomes  ninety  nine  percent  of  freestream velocity  so  this  definition  though  it  gives  a

pictorial view of the thickness of the boundary layer is difficult to obtain experimentally with

sufficient accuracy. This there is definitely, therefore there is a a need some thickness which



unlike  the  previous  one  which  is  differential  in  nature  unlike  the  differential  nature  of

boundary layer thickness, it would be an integral nature and the integrand would be such that

the integrand nearly at the, at or near the edge of the boundary layer. 

So we have, in the previous class we have also seen two integral thicknesses defined in such a

way that when expressed as a series a summation of a series the later terms which are the

terms which represent the region close to the edge of the boundary layer, their effect on the

total  summation  is  negligible.  So  these  two  thicknesses  are  known  as  the  momentum

thickness and the displacement thickness. So displacement thickness when talk in terms of

the reduction in mass flow rate because of the presence of the boundary layer and momentum

thickness when we talk in terms of the reduction in momentum of the actual mass which is

flowing through the boundary layer. 

So this is what we have done in our previous class. Now we would like to see if it is possible

to obtain an analytic solution or close to an analytic solution for flow inside a boundary layer.

We understand that this is a complicated situation because inside this region, the velocity is

the function of actual distance, the velocity is the function of distance, the vertical distance

from the solid wall, the effect of viscosity is important and therefore the equation we need to

start with is the equation of motion or the Navier–Stokes equation for two dimensional flow

for two dimensional flow inside the boundary layer and there are various terms which would

lead to complicacy whenever we try to analytically obtain a solution for such a case. 

So we would see that some of the approximations which are quite common in the treatment

of boundary layer, collectively they are called as the boundary layer approximations. So what

are those approximations, the logical basis on which these approximations are made and how

they can simplify a very complicated problem to something which is so we would start this

class  with  the  boundary  layer  approximations  for  laminar  flow  over  a  flat  plate.  And

whenever there is a flow over a flat plate under laminar flow conditions it's, it's approximated

as a zero pressure gradient flow and if we assume the plate to be horizontal there would be no

effect of body forces. 

If you consider gravity is the only body force which is present, so the Navier–Stokes equation

which we are going to write will, will be for a situation which is zero pressure gradient since

it's flow over a flat plate and it's, it’s a situation at which the effect of body forces are not

present, are negligible. So we are going to write the Navier–Stokes equation for flow inside a

boundary layer which would look something like this. We all know that the, 
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from our  statement  of Navier–Stokes equation,  if  we write  the x component  and we are

writing the x component since this is the principle direction of motion, plus v y del v del y nu,

which is nothing but mu by rho, the kinematic viscosity, del square v x by del x square plus

del square v x by del y square. And there is, as I mentioned before, there would be no effect

of, there is no pressure gradient or body force term in this. Now here we are going to make 
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a quick uh mental calculation of the significance of each of these terms Now we are talking

about a flow where the flow and this is the boundary layer and here I have v x which I

understand is a function of both x and y. And for this boundary layer to grow I also have a v y

which could also be a function of both x and y. But if we see, if we just analyze this you can



simply see that this v x is going to be very large as compared to v y. So v x, it's the principal

direction, the component in the principal direction 
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of motion must be higher, significantly higher than v 1. But the thickness, the boundary layer

thickness at  any point is delta and we understand that this delta is a function of x. As x

increases,  delta  keeps  on increasing.  However  the value of delta  is  quite  small.  It  is  the

thickness of the boundary layer is generally small, so the variation of v x with x and variation

of v x with y, if we consider these two terms, v x varies from zero over here at the solid liquid

interface equal to u where u is a  freestream velocity. So v x changes from zero to u over a

small distance delta so therefore del v x del y is going to be quite large as compared to del v x

del x. del v x del x simply tells you the variation in velocity between these two points over a

certain distance x so the reason, the analysis, or the understanding here clearly tells us that

this del v x del y v x del y
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because of the small value of delta is going to be significant larger than del v x del x or in the

other  words,  the  gradient  in  velocity  in  the  vertical  direction  is  going  to  quite  large  as

compared to  the  axial  velocity  gradient.  So as  you see  from here,  since  v x  is  large  as

compared to v y and del v x del x is large in comparison to del v x del x, the product of these

two, we cannot make any 
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judgment about which one is going to be significant So the each term contains two terms and

the nature of the variation or the magnitude of these terms are such that you need to keep both

of these terms in the Navier–Stokes equation. There is no way you can say that the, let's say

the first term is significant, the second is not and so on. So therefore you cannot make any



judgment and both the terms are to be kept into this equation. Now when we come to this part

over here, 
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here we see that these are essentially telling me about the viscous transport in the x direction

and viscous transport in the y direction, gradient of viscous transport in y direction. And from

our discussion over here, we understand that this term is going to predominate and therefore 
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this is going to be quite large as compared to the this term so the second term is going to

remain in the Navier–Stokes equation and the first term can simply be neglected. 
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So the final form of Navier–Stokes equation for flow for inside a boundary layer on a flat

plate can be written as this. And whatever I have discussed so far in terms of the magnitudes

the relative magnitudes of these terms 
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and their inter-relation, they are collectively known as the boundary layer approximations or

the boundary layer assumptions so one has to solve this equation for flow inside a boundary

layer with appropriate boundary conditions. And what we need is we need two conditions on

y and the two conditions on y are at y equal to zero which is at 
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this point your simply v x at no-slip condition would be zero and at 
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y equals infinity that means at 
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a distance far from the wall the v x would simply be equal to u where u is the freestream

velocity, Ok. 
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So these are the two conditions what we can say and the other condition, the initial condition

is at x equals zero, v x would simply be equals capital v where capital v is the velocity, the

approach velocity and we understand for special case of flow over a flat plate, this v would

simply be equal to u so the three conditions that are needed to solve this equation are at y

equal to zero no-slip condition at y equals infinity at far from the flat plate, the velocity is

equal to  freestream velocity and at the beginning at x equal to zero, the velocity for the flat

plate is 
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equal to the freestream velocity; so this equation has now to be solved for, for the, using the

three boundary conditions Now whenever we come across 
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such an equation, the equation was first solved by Blasius and it's also known as the Blasius

solution. What Blasius 
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reasoned that the velocity profile, the dimensionless velocity profile should be similar for all

values of x when plotted versus non-dimensional distance from the wall. So he has reasoned

it's only an assumption that v x by u would be a function would be function of eta where eta

is y by delta y is the distance from the wall, delta is the boundary layer thickness at that point.

So the dimensionless velocity is going to be a 
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function of dimensionless distance from the solid wall, which, which is logical, because if

you, 
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you think of the velocity, the dimensionless velocity profile it is definitely going to be a

function of distance from the solid wall. But since the velocity is non-dimensionalized we

need  to  non-dimensionalize  the  distance  from  the  solid  wall  as  well.  So  the,  the  only

dimension which is physically significant in a direction perpendicular to that of the flow has

to be, the thickness of the boundary layer. So eta which is the independent variable in this

case is defined as some sort of equal to y by delta where delta is the dimensionless thickness.

But if you go to the previous slide where I have written down the equation to be solved for

the case of flow inside the boundary layer this is not the only 
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equation,  this  I  call  as  equation  two,  this  is  not  the  only  equation  that  needs  to  solved.

Whatever be the solution that must also satisfy the equation of continuity which being the

equation of conservation of mass must 
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always be satisfied. So the two equations which are 

(Refer Slide Time 19:06)

to be satisfied for describing flow inside a boundary layer, the first one being equation of

continuity, conservation that has to be uh respected at all times and the second one is the

equation of motion or the reduced form of equation of motion using the approximations that I

have  described  commonly  known as  the  boundary  layer  approximations.  So  I  have  two

equations to deal with. Now it is sometimes advisable that instead of using two equations, if I

could reduce it to one equation then it would be probably be, obviously it would be easier to



handle. So I need to do something such that is it possible to do something such that these two

equations would reduce to only one equation, such that I need to solve one equation instead

of the two equations that I have right now. 

And the way to do that is to define something which would automatically ensure that the

equation of continuity is satisfied and the way to do that is to do that is to introduce the

concept  of  stream function  which  from your fluid  mechanics  you already know that  the

velocities, in this case the velocities in the x direction and the y direction can be expressed in

terms of a stream function which describes the flow and you also probably remember that

what are the properties of the stream function like the distance between the stream functions

essentially denote what is the volumetric flow rate between, between these two, two stream

functions can never cross each other and the tangent to the streamline is, essentially gives you

the  direction  of  the  velocity  at  the  specific  point.  But  anyway,  we  have,  we  know that

velocities can be expressed in terms of stream function. So we, we understand that v x by

definition would be del chi by del y where chi is 
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the stream function And v y 
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would be minus del chi by del x. So if you look at these two definitions of v x and v y and if

you plug them into equation 1, what you see is it is going to be 
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del chi del x del y and this one is going to be del chi del y del x. And chi being an exact

differential, the order of the, order of the derivative is unimportant so therefore the result of

this would be equal to zero, 
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so  since  the  order  of  differentiation  is  unimportant,  irrelevant  for  the  case  of  exact

differential, so del chi by del x del y and del chi by del y del x are essentially equal and since

we have a minus n here, the equation of continuity automatically gets satisfied the moment

we start to express v x in terms of 
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a stream function, v x and v y in terms of stream functions So now we do not have 
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the equation of continuity any more It's automatically satisfied so we just have one equation 
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to deal with which is the 
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equation of continuity, which is the equation of motion So bringing in the concept of stream

function allows me to substantially reduce the complexity of the problem. The next, it is still

a partial differential equation, v x and v y are functions of both x and y. x and y are both

independent variables. So is it possible somehow to club these two independent variables and

define a new independent variable which is, which is a result of x and y in a certain form

related to the new dimensionless variable and then express v x, v y and chi in terms of the

new variable. I will repeat this once again. What we see here is we are dealing with the partial

differential equation in the form of equation of motion. It would be even simpler if we can

revert this partial differential equation to an ordinary differential equation. 

And since v x and v y are functions of x and y, two independent variables, if I can club two

independent variables in a specific way such that I end up with only one independent variable

and v x and v y are now not functions of x and y but functions of the new independent

variable. Now in that case, I then have, instead of a partial differential equation I have an

ordinary differential equation where v x and v y are functions of only one variable which is

some sort of the combination of the two independent variables x and y. So the method of

converting a partial differential equation to an ordinary differential equation by combining

the  independent  variables  in  a  specific  way  is  known as  the  method  of  combination  of

variables. So we will see how the method of combination of variables can give a solution to

this  specific  problem. And we would first,  our aim is  to obtain an expression,  a  relation

between x and y. So I start with this equation again and try to see what is going to happen if I

do an order of magnitude analysis of this equation near the boundary layer. 
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So what is going to happen near the boundary layer, I am going to make a judgment on that.

Near the boundary layer, v x is approximately going to be equal to u, y is essentially equal to

delta and since the velocity does not change, v x does not change beyond the boundary layer,

del v x del x sorry del v x del y is going to be equal to zero. So if this is the boundary layer, v

x does not vary with y beyond the boundary layer. So at the edge of the boundary layer the

variation in axial component of velocity with y is approximately equal to zero. So if we, if we

see this then what we, what we are going to do is 
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I am going to write this equation, the approximate form of this equation is as u instead of v x

u by x which would be equal to this this part is going to be approximately equal to zero since

I have written over here and this is going to be equals nu and then what I have u and the value



of y is going to be equal to delta; so the relation that you get over here, the approximate

relation that you are going to get based on an approximation, 
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based on order of magnitude analysis, as scaling parameter what you would see is that delta

square is going to be equal to nu times x by u. And your delta 
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is simply going to be equal to or approximately equal to nu x by u; so if I define my new

dimensionless variable eta to be y by delta as we have done before, this would simply be

equal to y u by nu x. So this is the combination variable that 
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contains both y and x in a specific functional form and the functional form is essentially y by

root over x and we have these two terms which come from an order of magnitude analysis of

the equation near the boundary layer at the edge of the boundary layer. So approximately it

gives me a form of delta in terms of x, 
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delta is the film thickness which is only a function of x; delta is the boundary layer thickness

which  is  only  a  function  of  x.  So  it  gives  me  delta  as  a  function  of  x  and  since  the

dimensionless distance is defined as y by delta, so it is of the form of this only. So therefore

my equation, the equation that I have over here, the equation of motion 
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which is v x del v x del x plus v y del v x del y is equal to nu times del square v x by del y

square. This can 
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now be, now be handled first by introducing a stream function and second is by 
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invoking  the  method of  combination  of  variables  And the  stream function  that  we have

defined is chi and the, combination variable that we have defined is eta equals y root over u

by nu x. And since stream function, since I am going to make everything dimensionless, 
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I am defining a dimensionless stream function which is f equals chi by root over nu x u. This

dimensionless stream function is a function only of eta; 
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so next what is remaining is to convert the equation, the governing equation in terms of the

stream function and in terms of the new independent variable eta; so instead of 
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v x, v y as a function of x and y, I need to have f eta as a function only of eta. If I can do that,

this gives rise to a p d e but since f eta is a function 
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only of eta this will give rise to an o d e. So in the next class I am going to just see how this

transformation 
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from p d e to o d e takes place and that would allow us to solve this 
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equation  in  a  more  meaningful  way,  in  a  more  easy  manner  also  eliciting  fundamental

information  about  what  happens  at  the  edge  and  on  the  solid  surface  for  flow inside  a

boundary layer


