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We  would  look  at  one  more  problem involving  Navier-Stokes  Equation  and  this  would

probably be the last problem to deal with in this part, in this specific part of the course and we

would move on to something different. However I would supply you with list of, number of

problems with  answers  which  you can  try  on  your  own and  if  there  are,  there  are  any

questions I would be glad to answer those queries. So far what we have done, what we have

seen is that the velocity we were dealing with 1 D velocity that is the velocity is the function

it is a one dimensional velocity case. But there can be situations, many of the situations that

we, that have come into our every day experience, the velocity can vary with more than one

dimension. 

It could be a function of x and y, r and theta and so on. So in, in those cases you would see

that it  is  still  better  to start  with Navier-Stokes Equation,  it's  impossible  to  use the shell

momentum balance in such cases so we start with Navier-Stokes Equation and you get the

governing equation and identify what would be the boundary conditions. In some of the cases

it is possible to use certain simplifying assumptions. So those assumptions must be mentioned

clearly  in  order  to  obtain  a  closed  form solution  for,  for  velocity.  In  these  assumptions

sometimes can be used as the asymptotic solutions of the governing equations under certain



special conditions which would tell  us something about the physics of the process and it

could be extremely helpful in many such situations. 

So what we are going to do in the last problem in this series, we are going to look at the flow

between two parallel plates where the fluid enters through one of the plates at the center and

then distributes, distributes itself at the, in the intervening space between the two, two disks.

So we have two disks, circular disks one on top of other with a certain separation in between

and through the top disk at the center, through a hole liquid enters the space in between the

two disks and then they start radially flow, then they start flowing, radially flowing in the

direction the way my fingers are pointing. So it's a radially outward flow in between two

disks once they enter from the top at the center. 

And  you  would,  there  is  a,  there  is  a  pressure  gradient  and  since  these  two  disks  are

horizontal there is no effective body force to speak about, its only the pressure gradient which

drives the fluid radially outward. And you, it is also clear that the no-slip conditions on the

top plate, and on the bottom plate must be, must be uh adhered to so therefore the velocity is

going to be zero at the, at this point and zero on the bottom plate as well. So the principle

motion as it's clear from the figure that I have drawn over here, so we are looking at the radial

flow between parallel disks and two disks that I have drawn, they have the, the top one has a

hole at the, at the center and then in between, in between the two disks the fluid starts to

move  outside.  So  it's  definitely  a  cylindrical  coordinate  system.  But  in  this  cylindrical

coordinate  system there  can  be  three  components  of  velocity,  v  r  which  is  in  the  radial

direction, v theta which is in the theta direction or v z. 

So if you look carefully for the, at the, at the space in between the two, two disks it is only v

r, the velocity in the radial direction which exist. All other components of velocity namely v z

and v theta are zero. However there is an assumption involved in this. Think about the hole at

the  top  plate.  The  liquid  enters  through  that  hole,  comes  the  space  in  between  the  two,

changes its direction and then starts to flow radially outward. So there is a region very close

to the inlet where the flow is, where the flow changes its direction, where the flow can be a

function of, function of z as well where it could be a function of r and so on. So in our

analysis we are not taking into account the region which is very close to the inlet. 

So all our analysis is valid from this point, that means from the hole to the outside, outside of

the disk and not right under the hole where the flow, situation is extremely complex. So now

you, you see that in, in the, in the space between two disks you only have velocity in the r

direction. Now this velocity in the r direction is the function of z where you are with respect



to each of these plates and as the fluid moves outward the area available for flow keeps on

increasing because the area available for flow is simply twice pi small r times h if h is the

distance between the two disks. 

So as the flow goes to higher and higher radius the flow area keeps on, the flow area which is

perpendicular to the flow direction which is twice pi r times h that also keeps on increasing.

So as  the  flow area  increases  the  velocity  must  decrease  in  order  to  satisfy equation  of

continuity. So v r is not only a function of z, it's also a function of r. This has to be kept in

mind. So we are dealing with a velocity which is a function of r and as well which is a

function of z; whenever we come across such a problem we first try to see if use of equation

of continuity can somehow simplify the situation. So that's what we are going to do first. We

are going to use the equation of continuity 
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and this; we are trying to see if uh, a simplification is possible. So as I was saying, the top

disk, this and bottom disk which have separation of twice D between them and the flow

comes in through a hole whose radius is equal to r 1, the radii of both the disks, they are equal

to r 2 and the flow is moving radially outward. As the flow comes towards the outer edge the

cross-sectional area increases so the velocity reduces and we are not going to deal with the

region below 
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r 1 because we understand that the flow situation over there is extremely complicated. So as I

said  the  first  thing  to  do  is  to  use  the  equation  of  continuity  and  from the  equation  of

continuity, try to see if any compact formation is possible. So the r component of equation of

continuity in cylindrical coordinate system would simply be rho r  v r  where v r  is the r

component of velocity. 
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And since  v theta  and v z  are  zero this  is  the  only non-zero term in  the  equation.  And

therefore v r would be some phi by r. Now we realize that 
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velocity in the r direction as we have, as I have mentioned before is going to be, is a function

of z and r. Now since d d r of r v r is a constant, or d d r of phi is equal to zero, d d r of phi is

equal to zero then from this relation it is clear that phi is a function of z. 
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Once again, d d r of r v r is zero so if I bring r on this side, d d r of r v r is equal to d d r of phi

which is equal to zero. So phi is not a function of r. However since v r is a function of z and r,

phi has to be a function of z. So from this relation, from this relation we understand that phi

cannot be a function of r but since v r i is a function of z and r so phi has to be a function of z.

So that's the first thing that we, we can obtain and we have an approximate, we have an

expression for v r just by looking at the equation of continuity where the only thing we need



to do is try to see what, how can we evaluate phi? Now which component of Navier-Stokes

Equation that we are going to find, that we are going to do next. 

 (Refer Slide Time: 10:19)

Now it's a cylindrical coordinate system v theta is zero v z is zero so we must start with the r

component of Navier-Stokes Equation in cylindrical coordinate system that will describe the

flow in two parallel disks when they are separated by a distance twice b and when there is a

pressure  gradient  forcing  the  liquid  to  move  radially  outward;  so  we  start  with  the  r

component of the Navier-Stokes Equation. So I will write the r component which would be,

so this is the entire left hand side, so you can again uh 
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identify  that  this  is  the  special  term  and  all  these  four  terms,  since  they  have  velocity

explicitly present in them, they refer to the convective transport of momentum. 
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So these are the convective transport of momentum. This is the pressure gradient in the r

direction. What you have are the viscous transport of momentum; 1, 2, 3, 4 terms and then

you have a body force term. So as before we are going to see which of these terms can be

neglected. First of all it's a steady state. So this is equal to zero. 
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v r does not vary with t. Coming to the end I would also write this, the continuity equation,

this is for reference which was 1 by r. This was the equation of continuity which we have

seen 
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in the, in the past this thing. So here v r is not zero and del v or del r is also not zero so as the,

as the, as the liquid moves towards larger and larger values of r the v r has to reduce so v r

slows down with r therefore we cannot say anything about, we cannot equate this term to be

zero. 
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 So this will remain in the governing equation. Here we have a this term, v theta would be

zero 
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and in this case, v theta would be zero once again 
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and even the v r, v r varies with z however v z is zero so 
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therefore of the entire left hand side the only term which remains is rho times v r del v r del r.

There is a fixed pressure gradient present in the system so I must keep del p del r in, in here. I

will come to these at a later point. If I think of this term, v r is not a function of theta so

therefore 
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therefore this is going to be zero. There is no v theta present in the system so this term 
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would also be zero. However del square v r is a function of z so I cannot neglect, I cannot

make this term, equate this term 
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to zero. So this will also remain in the governing equation. And since the disks are horizontal

so there is no body force 
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acting on it therefore this will also be zero. So of these, of all the terms in the right hand side,

this is non-zero which will remain in the governing equation. This is non-zero, everything

else is zero and now we come back to this term. Now if you, if you remember from what we

have obtained from the, from the continuity equation is that v r is equal to phi by r 
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and we also realized that it's a function of z only. So if it is a function of z only so this is

simply del del r of r v r and del del r of r v r is simply phi. So I have phi, I can replace this

with phi and since phi is a function of z only the differentiation of phi with respect to r must

therefore be equal to zero which would allow me to cancel this term as well. Once again, this

r v r, r v r is equal to phi and we have realized from our previous discussion that phi is a

function of z only. phi is not a function of r. So if phi is not a function of r, therefore del del r



of phi would be zero,  therefore this term is going to be equal to zero.  So my governing

equation would consist on the left hand side as 
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this term, on the right hand side, this one 
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and this term. 
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So the governing equation would simply be equal to minus rho v r del v r by del r equals

minus del p by del r plus mu times del square v r by del z square. So this is the governing

equation 

(Refer Slide Time: 17:03)

for flow in such a system. And I am going to substitute v r and del v r del r from this relation

so what I would get is minus rho phi by r into del v r by del r which would be minus 1 by,

sorry this is plus, this is not minus; this is not minus, this is plus, 1 by r square in 1 by r

square; so del v del r if you see, del v del r it would be 1 v by r square into phi is equal to

minus del p del r plus mu times del square v r by del s square so final form of this 
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would be minus rho phi square by r cube equals minus d p d r, I am consciously using d p

instead of del p because p is the function of only r. It does not vary significantly with z or

with theta so your, your this thing won't be, and if I substitute this in here, my governing

equation would simply be; 
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so substituting v r in here you would, you would obtain d 2 phi by d z square and since phi is

a function of z only so I can drop the partial sign, it would simply be d 2 phi by d z square

and r, the r over here would simply come at this point. 

So my reduced form of the governing equation for flow between two circular disks as a

function 
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of applied pressure gradient would simply take this form. So again you see the utility of

Navier-Stokes Equation, how easy it is to at least arrive at the governing equation. There is

no need to think of any complicated shell 
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which would be very, complicated in this case. We would simply pick the form of the, pick

the direction in which velocity varies and try to solve it. So this is your governing equation. 
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The problem with this, the problem with this specific equation that is is non linear, it's a non-

linear equation. The non-linearity comes because of the presence 
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of this term on the left hand side. Since 
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the  presence  of  this  term makes  it  non-linear,  the  solution  there  is  no  way to  obtain  an

analytic solution for this case but if we try to think about the genesis of this 
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non-linearity, then probably it would give us some idea of some asymptotic conditions in

which this non-linear term, the effect of this non-linear term would not be significant. So if

you again look at the derivation, you would see that the non-linear term arises from the left

hand side of the Navier-Stokes Equation and the left hand side of the Navier-Stokes Equation

as I said many times before is due to the convective transport of momentum. Now what is

convective  transport,  what  is  the  root  cause  of  convective  transport  of  momentum?  It's

because you have a flow and with the flow, the flow carries some momentum along with it

which is, which is nothing but the convective momentum. 



Now if there are situations in which you can say that the effect of this convective momentum

is rather small then you would be able to drop the non-linear term on the left hand side. Now

since it is related to velocity, since this non-linear term is related to velocity, the only way

when you can drop this term or when you can disregard the contribution of this term into the

overall  scheme of things is  only when the flow is  very slow. So if  the flow is  slow the

convective  transport  of  momentum  can  be  neglected  but  not  the  convective,  not  the

conductive transport or the molecular transport or the viscous transport of momentum. 

Because unlike convective transport of momentum, the viscous transport of momentum does

not depend on velocity. Rather it depends on velocity gradient. So reduce, so keeping the

velocity low, assuming it is a low velocity situation will let you drop the convective term but

will  not necessarily,  you are in a  position to  cancel  the viscous terms ok. So if  this,  the

contribution  of  the  terms  mathematically  speaking,  is  truly  zero  then  those  special  flow

conditions in which the convective term, the effect of the convective term can be completely

neglected are known as the creeping flow situation. So the flow, the case where this entire

term 
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is equal to zero, they are called the creeping flow, Ok. So this creeping flow condition, which

the name suggests, it's a very slow flow 
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so the effect, the convective transport is small but the viscous transport may not be small. So

when this term is equal to zero, that is known as the creeping flow condition. So the analysis

that we are going to do from this point onwards is only valid for creeping flow or close to

creeping flow solution where the non-linear term can be dropped. So my governing equation

then becomes only this is equal to zero 
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since the left-hand side, I have, I have made it equal to zero by assuming it's close to creeping

flow situation. 
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So what then I have, what I have then is mu by r times d 2 phi by d r square is equal to d p by

d r. So this is creeping flow. This can now be integrated. 

(Refer Slide Time: 24:08)

phi is not a, sorry d z square; phi is not a function of r. So I can keep it outside the integration

sign, this is d r by r from r 1 to r 2 and this is d p, let's say the pressure at these two locations

are p 2 and p 1 and therefore 
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you can write l n r 2 by r 1 upon integration times d 2 phi by d z square would be equal to p 2

minus p 1. So if we define delta p is equal to p 1 minus p 2 then the equation 
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would transform to r 2 by r 1, d 2 phi by d z square plus delta p is equal to zero. So this is

now 
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a straight forward equation, second order equation in terms of phi. So creeping flow lets me

simplify the equation, governing equation considerably to obtain a compact equation where

phi is a function of z, phi is not a function of r. Pressure is a function of r, so therefore I

perform the integration and I obtain this expression for the, for phi. So what I do next is I find

out, I find out what is d phi d z which would be minus delta p z by mu times l n r 2 by r 1 plus

c 1 and 
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finally phi to be equal to minus delta p z square by 2 mu l n r 2 by r 1 plus c 1 z plus c 2 
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where c 1 and c 2 are constants of integration. If c 1 and c 2 are constants of integration in

then they should be evaluated using the appropriate boundary conditions. See what the way

we are, we are trying to handle this 
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problem is we understand that v r is simply going to be equal to phi by r; phi is a function of z

only. It's not a function of r. So my, our aim is to obtain an expression for phi. The expression

for phi can be obtained if we write the r component of Navier-Stokes Equation in cylindrical

coordinate system. That's what we have written but we have seen that unlike in previous

cases, there is a contribution from convective momentum. There is a contribution from the

left hand side of Navier-Stokes Equation. On the right hand side, the terms which would

remain are the pressure gradient and the variation of velocity v r with z Ok. The other terms



can be, other terms can be cancelled based on our understanding and based on the, on the use

of the continuity equation. 

The first term inside the third bracket, the first viscous term can be cancelled because of our,

because of the use, through the use of the continuity equation so there will be 3 terms in the

equation. One, the convective transport of momentum, one is a pressure gradient and the

other is a viscous transport, mu times by del square v r by del z square. The presence of the

convective term makes the equation nonlinear. We have to get rid of it if we would like to

find analytic solution. So fundamentally we understand that this contribution, the convective

contribution comes from velocity, the velocity in the r direction and the change in the surface

area in the r direction, so we have the convective contribution. 

When this convective contribution can be neglected, will be small when the velocity itself is

small; so velocity is small, will let me allow as a special case in the limit when the convective

term can be completely ignored. Mathematically that is known as the creeping flow case. So

the convective term, the non linear term is neglected since we are dealing with a very low

values of v r but that does not mean that the viscous transport can be neglected because it

depends on the gradient and not on the value of the velocity itself. So if we use the creeping

flow then we have only 2 terms present in it. One is the pressure gradient term and one is the

variation of velocity with respect to z, that term. 

We already have an expression for v r which is, if you look at any, which is phi by r. So

somehow I have to obtain an expression for phi. So I put that expression into the governing

equation and what I obtain is an expression of phi only. This equation can now be, so this

equation can, this is the equation which can now be integrated and this is the final form of phi

where C 1 and C 2 are two constants of integration which will have to be evaluated. phi

which is minus del p z square by two mu l n r 2 by r 1 plus C 1 z plus C 2, this would give me
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v r which I realize is the function of r and z. phi is a function of z only but v r is a function of

r and z as we have seen from our equation of continuity is phi by r. So this would be minus

delta p by 2 mu r l n r 2 by r 1 times z square plus C 1 by r z plus C 2 by r. So see how, how

we have got the expressions for v r from the expressions for phi identifying it’s a functional z

and this  is  from equation of continuity,  the specific  form of v r.  What  are,  what are the

boundary conditions? The boundary conditions are essentially no-slip at the top plate, at top

and bottom plate. In other words, mathematically v r which is a function of r and z would be

zero at z equals plus v and at z equals minus v at the top plate and at the bottom plate.

However we must realize that it's valid in a region where r is greater than r 1 but less than r 2,

where r 1 is the radius of the hole at the top through which the liquid comes in to the space

between the two discs 
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and r 2 is the radius of the two discs, outer radius 
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of the two discs. So the domain of, domain of applicability of these two equations, these

equations, this equation is only between r 1 to r 2. So that's what it simply means, that it is

going to be between r 1 and r 2. So with these two boundary conditions one should be able to

evaluate what is C 1 which would turn out to be equal to zero and the expression for C 2

would be equal to delta p d square by twice mu l n r 2 by r 1. So 
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your v r which is a function of r and z, with the, with this expressions for C 1 and C 2 would

finally come to be delta p v square 2 mu r l n r 2 by r 1, 1 minus z by D whole square. So this

is the final form of the, this is the final form of 
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the velocity expression for the case of flow between, for the case of pressure driven flow,

pressure gradient driven flow between 2 parallel plates which are separated by the distance

twice b where the geometric parameters are r 1 is the radius of the hole through which the

liquid comes in, r 2 is the, is the, is the outer radius of the both the plates, delta p is the

applied pressure gradient and mu is the viscosity of the liquid in between. If we have, since

we have the value of v r, it is then easy to calculate what would be the value of 
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Q. Because here, most of the times we are not interested in finding out what is the velocity at

every point in the flow field. We would rather, we are more comfortable in dealing with the,

the average values, for example the average velocity, or from the average velocity one can

obtain what is the flow rate. So the flow rate would simply be twice pi minus b to plus b r v r

d z. So this is 
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area averaged volumetric flow rate where the d z can vary from minus b to plus b and what

you have and r v r is simply equal to phi from our equation of continuity and we understand

that phi is a function only of z. So this is consistent, this expression of Q is consistent with 
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our understanding and it; it follows the physics of the problem. So Q would simply be equal

to twice pi delta p, after you put the expression of phi in there, v square by 2 mu l n r 2 by r 1

from minus b to plus b 1 minus z by b whole square d z. And 
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after one or two steps, r 2 by r 1; 



(Refer Slide Time: 35:40)

so here you see how it is, how we get 
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compact expression for the flow of liquid, Newtonian liquid in between 2 plates in laminar

flow when there is a pressure gradient and when there is no effect of gravity. But the major

assumption that we have incorporated, we have put in here is that the, the flow is very slow.

That means the flow is called and can be termed the creeping flow. What is the specialty of

creeping flow? There is no contribution from the convective transport. The only contribution

to momentum transfer is due to the viscous transport or the pressure gradient and body force

if it is present but momentum transport due to convection is absent in the case of creeping

flow. 



So a non-linear equation which we have quickly obtained from the, from our analysis of

Navier-Stokes Equation has led to the complicated expression which with the use of the right,

uh right approximation, assumption has given rise to an expression, governing equation that

can be integrated, that to obtain the value of phi where phi is the z component dependent, the

z direction dependence of velocity and we can obtain the point, the expression for velocity,

the expression for average velocity and expression for volumetric flow rate as we have done

here. So this is another nice example of the use of Navier-Stokes Equation to solve problems

like this. 

There can be many other problems, more complicated problems of Navier-Stokes Equation,

some of which I would try to give as an exercise, as exercise problems to you and there

would be more complicated problems which are beyond the scope of this specific course. So,

but whatever it is, I would like to summarize so far what you have understood, what I tried to

convey to you is that shell momentum balance is for beginners, it's a good thing because it

gives you some hands-on on the concepts involved, but the moment you deal with slightly

complicated problems you feel the need for a more generalized approach which is provided

by Navier-Stokes Equation. And I think I have solved 5 or 6 problems in this, in this part of

the course to give you some idea of how to handle such situations. And we would, we would

solve similar few more courses, few more problems in, 
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in our tutorial part. So I think I will end 
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here and this would be the, this would be the like conclusion of our part of Navier-Stokes

Equation and what I am going to do from next class onwards is try to introduce the concept of

boundary  layers,  which  this  boundary  layer,  the  concept  of  boundary  layer  is  extremely

important in transport phenomena and I would give you an overview of the boundary layer,

how it can be solved, how they are connected with many of the problems that we encounter in

everyday lives and I would try to give you examples to which you can relate to, and this

would give us some idea about what is the effect of boundary layers, the utility of boundary

layers, how you can modulate the boundary layers to get more transport and you would see

most of the transport is confined near the interface, near the solid liquid, solid fluid interface.

So if we can manage that, understand the physics of that then we are in a very good position

to alter the boundary layer and to get the desired transport from the specific system. So that's

what we are going to start in the next class. Thank you.


